

IEEE INFOCOM, March 15, 2005

Hyuk Lim and Jennifer C. Hou University of Illinois at Urbana Champaign

Localization

Determining geographical locations of sensor node in sensor networks.

Anisotropy

Definition: "Having properties that differ according to the direction of measurement."

Ratio of distance / hops is anisotropic.

	distance	hops	ratio
dir ₁	1	4	1/4
dir ₂	1	5	1/5

Irregular radio pattern²

• Non-convex region

Non-uniform distribution of beacon nodes

- Goal: To achieve accurate and robust estimation of geographical node locations in anisotropic sensor networks.
- Procedures:
 - Discovering anisotropic properties from measurements between beacon nodes.
 - Constructing a proximity-distance map (PDM)
 retaining as much topological information as
 possible in all directions of the measurements.
 - Estimating distances from a node without a GPS to beacon nodes and computing the location by triangulation.

Related Work

- Centroid localization Bulusu et al., IEEE Pers. Commun. 2000
- Adhoc positioning system (APS) Niculescu et al., Globecom 2000
 - DV-hop, DV-distance, and Euclidean propagation method.
 - In DV-hop, each beacon node computes the distance per hop by averaging the measurements from all the directions of beacon nodes

•
$$c_i = \frac{\sum_{j} \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}}{\sum_{i} h_j}$$
, $i \neq j$ $d_{ik} = c_i \times h_{ik}$

- Amorphous localization Nagpal et al., ISPN 2003
- APIT He. et al., Mobicom 2003
- Multidimensional Scaling (MDS) based algorithm
 - Ji et al. INFOCOM 2004
 - Shang et al. Mobihoc 2003, INFOCOM 2004

Proximity and Distance

- Proximity: quantitative measure that reflects the geographic distance.
- Example: proximity = number of hops

For b_1 , proximity $\vec{p}_1 = [0,3,4]^T$ distance $\vec{d}_1 = [0,10,20]^T$

For s, proximity $\vec{p}_s = [2,1,2]^T$ distance $\vec{d}_s = ?$

Localization for Anisotropic Networks

DV-hop

Average ratio over all the directions

average distance per one hop for b₁

$$c_1 = \frac{10 + 20}{3 + 4} = 4.28$$

distance between b₁ and s

$$c_1 = \frac{13 + 23}{3 + 4} = 4.28$$

 $d_{b_1s} = 4.28 \times p_{b_1s} = 8.56$

Proposed method

Generalized proximity-distance function

$$d_{b_1s} = t_{b_1b_1}p_{b_1s} + t_{b_1b_2}p_{b_2s} + t_{b_1b_3}p_{b_3s}$$

Proximity distance map

$$\mathsf{T} = \begin{bmatrix} \mathsf{t}_{\mathsf{b}_1\mathsf{b}_1} & \cdots & \mathsf{t}_{\mathsf{b}_1\mathsf{b}_\mathsf{M}} \\ \vdots & \ddots & \vdots_{\mathsf{7}} \end{bmatrix}$$

Proximity-Distance Map

- Construct proximity-distance map (PDM) from measurements <u>between beacon nodes</u>
- Least square solution: T=DP^T(PP^T)-1
 - P and D are proximity and distance matrices.

$$\begin{bmatrix} 0 \\ 10 \\ 20 \end{bmatrix} \begin{bmatrix} 10 \\ 0 \\ 15 \end{bmatrix} \begin{bmatrix} 20 \\ 15 \\ 0 \end{bmatrix} = T \bullet \begin{bmatrix} 0 \\ 3 \\ 4 \end{bmatrix} \begin{bmatrix} 3 \\ 0 \\ 3 \end{bmatrix} \begin{bmatrix} 4 \\ 3 \\ 0 \end{bmatrix}$$

$$T = \begin{bmatrix} 4.16 & 1.11 & -0.83 \\ 0.62 & 4.16 & -0.62 \\ 0.00 & 0.00 & 5.00 \end{bmatrix}$$

Distance to ith beacon node = T_{ij} × Proximity to jth beacon node

Distance Estimation for Sensors

PDM: Transformation matrix from a proximity embedding space to a distance embedding space.

for node s,
$$\vec{d}_s = \begin{bmatrix} 7.77 \\ 4.16 \\ 10.0 \end{bmatrix} = T \bullet \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$$

Robust Computation of PDM

- Matrix inversion incurred by $T = DP^{T}(PP^{T})^{-1}$
 - Singular value decomposition (SVD)

$$P = U \bullet \begin{bmatrix} \Sigma & 0 \\ 0 & 0 \end{bmatrix} \bullet V^{T} \qquad U = \begin{bmatrix} u_{1}, \dots, u_{M} \end{bmatrix} \qquad \Sigma = diag(\sigma_{1}, \dots, \sigma_{W})$$

$$V = \begin{bmatrix} v_{1}, \dots, v_{M} \end{bmatrix} \qquad \Sigma = diag(\sigma_{1}, \dots, \sigma_{W})$$

$$P^{T}(PP^{T})^{-1} = V \bullet \begin{bmatrix} \Sigma^{-1} & 0 \\ 0 & 0 \end{bmatrix} \bullet U^{T} = \sum_{i=1}^{W} \frac{1}{\sigma_{i}} v_{i} u_{i}^{T} \qquad \Sigma^{-1} = diag(\sigma_{1}^{-1}, \dots, \sigma_{W}^{-1})$$

- Truncated pseudo-inversion technique
 - Discarding components corresponding to small (near-zero) singular values by truncating terms at an earlier index $\gamma < w$.

$$T = D \bullet \sum_{i=1}^{\gamma} \frac{1}{\sigma_i} v_i u_i^{\mathsf{T}}$$

Cumulative percentage method $\tau(\gamma) = \frac{\sum_{i=1}^{n} \sigma_i}{\sum_{i=1}^{m} \sigma_i} \ge \tau^*$ for selecting γ ($\tau^* = 0.98$).

$$\tau(\gamma) = \frac{\sum_{i=1}^{\infty} \sigma_i}{\sum_{i=1}^{W} \sigma_i} \ge \tau$$

Simulation Results

- Network setup
 - Radio range = u and 1.3 u, Area = 10 x 10 u
 - # of nodes = 250, # of beacon nodes = 4 ~ 30.
- Algorithms: APS, MDS-based algorithm, PDM
 - MDS-based algorithm
 - Use SVD but take <u>2-3 components</u> for obtaining 2-3 dimensional representation (locations).
 - Complexity $\sim O(N^3)$, $N = \underline{\text{total number of sensor nodes}}$.

Topologies

Performance in Isotropic Networks

Topology A
Uniform distribution of beacon and sensor nodes
High connectivity (r=1.3u)

DV-hop (DV-distance) and PDM achieve the same performance in isotropic network using the same amount of measurement data.

Performance in Anisotropic Networks

Topologies B and C Uniform distribution of beacon Proximity = Hop-count

PDM achieves much better performance in anisotropic sensor networks

Performance under Topology Control

Under Topology Control (Minimum Spanning Tree)
Low connectivity
Each node has a different radio range

Under topology control, more beacon nodes are needed for accurate estimation. Still PDM achieves the best performance.

Non-uniform Distribution of Beacons

PDM achieves almost the same performance even when beacon nodes are not uniformly distributed.

- PDM achieves accurate and robust estimation of locations in both isotropic and anisotropic sensor networks.
- In various scenarios, the achieved location errors in anisotropic sensor network were below 0.4 radio range as long as a ratio of beacon nodes exceeds a certain threshold.