
1

Automated Cloud Migration based on Network
Traffic Dependencies

Jargalsaikhan Narantuya, Hannie Zang, and Hyuk Lim
School of Electrical Engineering and Computer Science

Gwangju Institute of Science & Technology
Gwangju, Republic of Korea

{jargalsaikhan.n, hanizang, hlim}@gist.ac.kr

Abstract—We propose a cloud migration strategy that
migrates applications and services running on multiple virtual
machines (VMs) from one cloud environment to another.
Current migration techniques mostly focus on migrating VMs
between physical servers that are placed inside a single cloud. In
this work, we consider an automated cloud migration system that
enables a cloud migration of multiple VMs between different
cloud infrastructures. However, if multiple VMs are used to
constitute a multi-tier web application, the cloud migration must
consider any dependency among the VMs. Otherwise, it could
cause a significant increase in downtime of the application during
the migration. To reduce the migration downtime of applications,
we propose a VM grouping scheme using principal component
analysis (PCA) based on traffic dependencies. For our
experiments, a cloud environment is built with OpenStack, which
is an open source software for creating and managing VM-based
cloud computing environments.

Keywords—Cloud migration, OpenStack, traffic dependency,
virtual machine, PCA, open-source software

I. INTRODUCTION

 The cloud lock-in problem is a situation where customers
are dependent on a single cloud provider and cannot move to a
different cloud environment [1]. One solution to the cloud
lock-in problem is cloud migration, which enables the moving
of applications of customers in one cloud to another cloud.
However, current migration techniques mostly focus on
migrating VMs between physical servers that reside in a single
cloud. In this paper, we consider an automated cloud
migration system that enables the migration of VMs between
different clouds. Such a system can be used by customers to
change cloud providers if they can take the advantages of
moving to a new cloud environment.
 Applications in the cloud are generally deployed across
multiple VMs, and these VMs are often part of multi-tier web
applications. If we migrate the VMs without considering
traffic dependencies, the downtime of the applications could
be increased during the cloud migration. Thus, migrating
applications between different clouds may require joint
migration of dependent VMs [2]. Based on traffic
dependencies between the VMs, we propose a VM grouping
strategy using PCA for joint migration of dependent VMs.
 Most research work on VM migration has focused on the
improvement of performance in a single cloud through
techniques such as load balancing based migration, fault
tolerance, and energy-efficient VM placement. Ghribi et al.

[3] introduced an energy-aware VM migration strategy for
reducing energy consumption in the datacenter. They
proposed a strategy to reduce the number of physical servers
used by letting idle physical servers go into sleep mode. In [4],
Wang et al. proposed a VM migration plan in the datacenter
that reduced the total migration time in software-defined
networking (SDN) environments. Their strategy allows
multiple VMs to be migrated simultaneously through multiple
routing paths with the help of the SDN environment.

Fig. 1. Cloud Migration

Lu et al. [7] introduced VM grouping strategy based on
minimum-cut and k-means algorithms for inter-cloud live
migration. They attempted to reduce the amount of traffic
between the clouds during the inter-cloud migration. In [8],
Tziritas et al. proposed a service migration scheme for
minimizing network overhead in a cloud. They introduced a
strategy of deciding at what point in time the service must be
migrated to another cloud for reducing network overhead.

VM migration techniques within a single cloud are
developed, as can be seen by tools such as VMWare vMotion
[9] and live migration in OpenStack [10]. VMware vMotion
enables the migration of running VMs from one physical
server to another inside a VMware vSphere environment.
However, there are some limitations of VMware vMotion. For
instance, the VM being migrated must remain within a single
datacenter, and the source and destination servers must have
access to the same data store. The OpenStack live migration
tool enables the movement of VM instances from one
compute node to another. This migration scheme supports the
migration of VM instances to a single cloud environment only,
and requires shared storage of compute nodes like vMotion.

2

II. SYSTEM OVERVIEW

 As shown in Figure 1, we built two private clouds using
OpenStack. OpenStack is an open source software platform
for building and managing cloud computing environments
[10]. This platform provides fundamental functions required
for building cloud based services, such as computation,
networking, and storage [5]. For our automated cloud
migration system, we developed a new framework consisting
of three main functionalities: dependency detection, VM
migration, and transmission speed maximization.

A. Dependency Detection

 We measured the traffic between VMs that were in the
process of running cloud applications in order to detect
dependencies between them. One of the important operations
when detecting traffic dependencies of VMs is the capturing
of traffic between VMs in the cloud. Based on a port mirroring
method, we implemented software to monitor east-west traffic
in the cloud. Port mirroring is a well-known technique, in
which packets are replicated based on their incoming or
outgoing ports, and then forwarded to other ports. For each
interval of time during which the cloud applications were
being run, the total number of bytes of all packets transferred
between VM pairs were summed up and recorded as traffic
volume. The obtained traffic information was then used for
detecting dependencies between the VMs. Further analysis
and grouping of the VMs using this dependency information
was then computed using our proposed VM grouping strategy.

B. Migrating VMs

 We developed an automation framework to migrate the
VMs between different OpenStack-based clouds. In the
framework, there are two main modules: one which works at
the source, sending VMs to their destination, and another
which works at the destination, receiving inbound VMs. We
have named the modules “sender” and “receiver,” respectively,
and their operation is described as follows:

Fig. 2. VM migration steps

 At the source cloud, we first obtain the network
configuration information of the VMs by using the Nova and
Neutron APIs. The sender then conveys the obtained network
configuration information to the receiver at the destination
cloud. After sending the configuration information, the sender
starts to transmit the VMs to their destination based on our

migration strategy. As shown in Figure 2, the steps one
through four illustrate the process of sending VMs from the
source cloud. First, a control message is sent to initiate the
copying of the current state of the VM. Based on the control
message, the cloud system copies the current state of the VM
during step two. As a result of step 2, a new VM image is
created in Glance, which is downloaded as an image file to the
local system in step 3. Lastly, in step 4, the downloaded image
file is transferred from the source to the destination. In this
manner, all of the VMs are able to be sent from source to
destination. After sending all of the VMs, the sender transmits
a control message to the destination to let the receiver know
that sending has completed.
 The receiver method works at the destination, receiving
and configuring the inbound VMs. To receive the VMs, the
receiver method uses an inotify event handler that signals the
arrival of a new file at the destination. Inotify is a Linux kernel
subsystem that acts to extend filesystems, allowing them to
notice changes that are made, and to report those changes to
applications [11]. First, the receiver receives the network
configuration information of the VMs from the sender. Next,
based on the received network configuration information, the
receiver uses Neutron APIs to recreate the network
configuration at the destination, including the creation of
floating IPs identical to the floating IPs of the VMs in the
source cloud. As shown in Figure 2, steps four to seven
illustrate a process of receiving a VM. With the help of the
inotify event handler, the receiver receives an image of the
VM from the sender in step 4. After receiving the image, the
receiver uploads the image from local storage to Glance in
step 5. Next, in step 6, a control message is sent to create a
VM from the received image file and its related network
configuration. In step 7, based on the control message, the
cloud system creates a VM with its relevant configurations.

C. Maximizing Transmission Speed

 As shown in Figure 2, the step 4 of the migration performs
the transmission of a VM image between the clouds. The file
transmission speed between the clouds is inversely
proportional to the migration time [6]. In order to reduce the
migration time, we connect the two clouds through a 10G
network. To efficiently utilize the 10G network, we use the
BBCP file transmission tool. BBCP is a multi-streaming file
transmission tool that splits the files into multiple streams,
each of which is then transferred simultaneously [12]. As a
result, the file transmission speed of BBCP is faster than
single-streaming file transmission tools such as SCP and
SFTP. We compared the performance of BBCP and SCP by
transmitting a 100 GB file through a 10 Gb/s Ethernet link,
and found the transmission speed of BBCP to be almost twice
that of SCP, with an average speed of 2.095 Gb/s versus 1.188
Gb/s, respectively.

III. PROPOSED CLOUD MIGRATION

A. Background

 Generally, applications in a cloud are hosted across
multiple VMs, and the proper running of these applications

3

requires that all related VMs to be run together. However, it is
impossible to migrate the VMs from one cloud to another
without stopping them, even if only for a short time. Therefore,
a cloud migration will always impact the applications that are
running on that cloud. During a cloud migration, an
application becomes unavailable when the first VM of that
application stops, even though other VMs the application
relies on may still be running. Therefore, service downtime
due to a cloud migration is measured by the time beginning
when the first VM in the source cloud stops, and ending when
the last VM in the destination cloud restarts.
 The downtime of the application during migration of
multiple VMs fluctuates depending on the migration strategy.
An inappropriate migration might increase the number of VMs
to be migrated until all the VMs belonging to the application
have been migrated. To decrease the application downtime,
we categorize the VMs into affinity groups, and migrate
together those VMs that belong to the same affinity group.

B. Grouping VMs

 Assume there are n virtual machines in a cloud, and that
these VMs should be migrated to another cloud. Let the set of
VMs be represented by V = {V1, V2, V3 ….. Vn}. Let “i” denote
an index of the VMs such that i = {1, 2 … n}. By using the
network traffic dependency detection software that we
developed, we obtain traffic information of VMs in the cloud.
The obtained traffic information is used for creating a traffic
information matrix W. Let W be an n-by-n traffic information
matrix, with each of its elements wi,j representing a traffic
weight between the VMs Vi and Vj.

Fig. 3. Finding similarity group of the VMs using PCA

 Our proposed strategy categorizes VMs into affinity
groups based on the traffic dependencies of the VMs. To
compute the affinity groups, our proposed algorithm uses
principal component analysis (PCA). PCA converts a set of
observations of possibly correlated variables into a set of
values of linearly uncorrelated variables called principal
components. PCA projects these observations into a new,
uncorrelated space of smaller dimension [13]. Using PCA, the
traffic information matrix W is reduced to an m-by-n matrix,
meaning the n VMs are clustered into “m” groups of related

VMs. The details of the grouping strategy using PCA are
explained in the following paragraph.
 As shown in Figure 3, the VMs have been clustered into
two affinity groups using PCA. To achieve this, we first
compute a covariance matrix of the traffic information matrix
W. Next, we find the eigenvalues and eigenvectors of the
covariance matrix. After finding the eigenvalues and
eigenvectors, we select the eigenvector with the highest
eigenvalue as a principle component of the data set. The
selected eigenvector is illustrated in Figure 3 as the vector
labelled v1. The XY coordinates of the data are then projected
onto a single point on v1 and clustered into two groups,
depending on the distance between the points.

Fig. 4. 3-tier architecture of web services

IV. EXPERIMENT RESULT

 As mentioned in the System Overview section, we built
two independent clouds using OpenStack, named cloud A and
cloud B. The physical machines have the following
specifications: The controller nodes have an Intel Xeon
W3565 3.2 Ghz CPU, with 48 GB RAM, and 1 TB SSD. The
compute nodes have an Intel Xeon E-5 1680v4 3.4 GHz CPU,
with 128 GB RAM, and 1 TB SSD. We built a 3-tier
architecture of web-based services in cloud A. As shown in
Figure 4, there were two different services: one consisting of
seven VMs, the other consisting of five VMs. The VMs that
were used for building these services were configured with
Ubuntu 14.04.5 LTS OS, and provisioned with 1 vCPU, 2 GB
RAM, and 20 GB storage.
 To evaluate the performance of our proposed migration
strategy, we conducted a migration from cloud A to cloud B of
the two services mentioned above, while providing two clients,
named client 1 and client 2, access to the services. We
compared the performance of our proposed migration strategy
against a naïve migration strategy. The naive migration of the
cloud randomly decides the migration order of the VMs,
without considering any dependencies between the VMs.
 Figure 5(a) shows an experimental result of our proposed
migration strategy. Before starting the migration, both services
responded normally, from cloud A, to the requests of the
clients. We started the cloud migration at t = 35, using our
proposed migration strategy, and service 1 became unavailable
at t = 43. Service 2 continued to respond normally to its client

4

during this time. After 216 seconds of downtime, service 1
finished restarting and began to respond, from cloud B, to its
client, at t = 259. Service 2 continued to respond normally
during the migration until t = 226. This means our proposed
migration strategy successfully found the dependencies
between the VMs, and migrated the dependent VMs together.
As a result, the VMs belonging to service 1 were migrated
before t = 226, and the VMs belong to service 2 were migrated
after t = 226. At t = 451, service 2 completed restarting and
began to respond, from cloud B, to client 2. Accordingly, the
downtime of service 2 is measured by the difference in time
between 226 and 451.

(a) Experiment result of proposed migration

(b) Experiment result of naïve migration

Fig. 5. Round Trip Time w.r.t Service Request Time

 Figure 5(b) presents an experimental result of the naïve
migration strategy. Compared to our proposed strategy, the
downtime of both services is considerably larger for the
duration of the migration. The downtime of service 1
increased to 414 seconds, and the downtime of service 2
increased to 321 seconds. The reason for the increase in
downtime is that the dependencies between the VMs were not
considered. As a result, VMs belonging to the same service
not being migrated together.

V. CONCLUSION

 In this work, we implemented an automated cloud
migration system based on network traffic dependencies. For
the detection of dependencies among the VMs, we proposed a

PCA-based VM grouping strategy based on gathered network
traffic information. Experimental results show that our
proposed cloud migration strategy outperforms a naïve
migration strategy. The cloud environment used for this work
was built with OpenStack, which is a set of software tools for
constructing and managing cloud computing platforms.
Additionally, we plan to extend our work to enable cloud
migration between public clouds such as Amazon, Google
Cloud, and Azure. The source code and configuration of this
work are available in [14] and are provided under the Apache
license.

ACKNOWLEDGMENT

 This work was partly supported by GIST Research Institute
(GRI) grant, and by NRF grant (2017R1A2B2010478) and
IITP grants (No. R7117-16-0218, Development of Automated
SaaS Compatibility Techniques over Hybrid / Multisite Clouds,
and No. B0101-15-0557, Resilient CPS Research) funded by
the Korea government (MSIP).

REFERENCES
[1] J. Opara-Martins, R. Sahandi, and F. Tian, “Critical analysis of vendor

lock-in and its impact on cloud computing migration: A business
perspective,” Journal of Cloud Computing, vol. 5, no. 1, pp. 1-18,
2016.

[2] E. Keller, S. Ghorbani, M. Caesar, J. Rexford, “Live migration of an
entire network (and its hosts),” ACM Workshop on Hot Topics in
Networks, pp. 109-114, 2012

[3] C. Ghribi, M. Hadji, D. Zeghlache “Energy efficient VM scheduling for
cloud data centers: exact allocation and migration algorithms”
IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), pp. 671-678, 2013.

[4] H. Wang, Y. Li, Y. Zhang, D. Jin. “Virtual machine migration planning
in software-defined networks,” IEEE Conference on Computer
Communications (INFOCOM), pp. 487-495, 2015.

[5] J. So, D. Kim, H. Kim, H. Lee, and S. Park, “LoRaCloud: LoRa
platform on OpenStack,” IEEE NetSoft Conference and Workshops
(NetSoft), pp. 431-434, 2016.

[6] S. Akoush, R. Sohan, A. Rice, A. W. Moore, and A. Hopper,
“Predicting the performance of virtual machine migration,” IEEE
International Symposium on Modeling, Analysis & Simulation of
Computer and Telecommunication Systems (MASCOTS), pp. 37-46,
2010.

[7] T. Lu, M. Stuart, K. Tang, and X. He, “Clique migration: Affinity
grouping of virtual machines for inter-cloud live migration,” IEEE
International Conference on Networking, Architecture, and Storage
(NAS), pp. 216-225, 2014.

[8] N. Tziritas, S. Khan, T. Loukopoulos, S. Lalis, C.Z. Xu, K. Li, and A.
Zomaya, “Online inter-datacenter service migrations,” IEEE
Transactions on Cloud Computing, 2017.

[9] http://www.vmware.com/pdf/vmotion_datasheet.pdf

[10] https://www.openstack.org/

[11] http://man7.org/linux/man-pages/man7/inotify.7.html

[12] https://www2.cisl.ucar.edu/resources/storage-and-file-systems/bbcp

[13] https://en.wikipedia.org/wiki/Principal_component_analysis

[14] https://github.com/K-OverCloud/Composable-VM-Migration

