


Abstract— With regard to cyber security, pervasive traffic

visibility is one of the most essential functionalities for complex

network systems. A traditional network system has limited access

to core and edge switches on the network; on the other hand,

software-defined network (SDN) technology can provide flexible

and programmable network management operations. In this

paper, we consider the practical problem concerning how to

achieve scalable traffic measurement using SDN functionalities.

Less-intrusive traffic monitoring can be achieved by using a

packet-sampling technique that probabilistically captures data

packets at switches, and the sampled traffic is steered towards a

traffic analyzer such as an intrusion detection system (IDS) on

SDN. We propose the use of a centrality measure in graph theory

for deciding the traffic sampling points among the switches. In

addition, we discuss how to decide the traffic sampling rates at the

selected switches. The results of the simulation and SDN testbed

experiments indicate that the proposed sampling point and rate

decision methods enhance the intrusion detection performance of

an IDS in terms of malicious traffic flows in large-scale networks.

I. INTRODUCTION

s the population of Internet users continues to grow, the

number of devices connected to the Internet is increasing

rapidly. Because of this explosive expansion of the network

scale, there exists huge demand for flexible and scalable

network management. Moreover, cyber security for home and

enterprise networks has become more important because our

daily data applications and access to services such as banking,

shopping, business, education, and transportation are provided

via the Internet. One of the rapidly increasing threats is

ransomware, which is computer malware that executes a

cryptovirology attack and demands a ransom payment to

restore the damage [1, 2]. These malware propagations via the

Internet can be prevented by capturing suspicious packets on

the network and inspecting them by using security application

solutions such as an intrusion detection system (IDS). Usually,

IDSs are deployed on networks in data centers. These systems

are connected to edge or core switches, and are used to monitor

network traffic patterns and inspect data packets in order to

detect malicious activities.

A software-defined network (SDN) 1 is a promising

technology that can provide flexibility, robustness, and

programmability. Briefly, the principal concept of SDN is to

decouple the network control plane from the data-forwarding

plane. Forwarding decisions in traditional networks are made

The authors are with the Gwangju Institute of Science and Technology (GIST),

Korea.
1 SDN: http://www.opennetworking.org/sdn-resources/sdn-definition

by a routing algorithm in each switch; on the other hand, the

controller on an SDN is responsible for controlling the

forwarding operations of the switches in a centralized manner.

In this regard, the OpenFlow (OF)2 protocol is one of the most

popular protocols used for communication between the SDN

controller (for the control plane) and SDN-enabled switches

(for the data plane). Owing to this flexibility and

programmability, SDN technology can be applied to cyber

security network applications as well as high-performance data

center networks. For example, the SDN controller can enable a

switch to duplicate the traffic flow of interest and steer the

traffic towards a traffic collector by simply updating the

forwarding table of the switch via an OF protocol. Network

programmability such as traffic duplication and rerouting can

facilitate the implementation of traffic-monitoring operations

for cyber security. In [1], a ransomware mitigation method that

exploits SDN functionalities was proposed. It uses the SDN

functionality for forwarding/steering traffic in order to inspect

all the DNS traffic packets (that may include the DNS query for

ransomware proxy servers) and the traffic duplication

functionality to implement the DNS packet inspection without

incurring delays in the DNS response time.

Another important problem associated with network traffic

monitoring is the acquisition of network traffic packets in a

less-intrusive manner. If every packet belonging to a traffic

flow is captured and forwarded to a traffic collector, the amount

of traffic that is newly generated for traffic monitoring purposes

would be the same as that of the original traffic, and may cause

significant congestion on the network. For less-intrusive

monitoring, it would be desirable to selectively capture traffic

packets rather than capturing every packet at the switches. This

method is known as packet sampling and can be implemented

in several ways. Given information about the network topology

and traffic flows, it is essential to decide where to sample traffic

and how much traffic is sampled at each of the selected

switches when the total amount of sampled traffic is bounded

for less-intrusive traffic monitoring. In terms of deciding the

sampling points, we propose the use of a centrality measure in

graph theory for exploiting the network topology and flow

information. The use of a centrality measure enables us to select

switches with relatively higher importance. Once a subset of

switches is chosen, packets passing through each switch can be

sampled at a certain rate in a fair manner. The results of the

simulation and SDN testbed experiments show that the

proposed approach can significantly reduce the sampling points

2 OpenFlow: http://www.openflow.org

Scalable Traffic Sampling using Centrality

Measure on Software-Defined Networks

Seunghyun Yoon, Taejin Ha, Sunghwan Kim, and Hyuk Lim

A

on the network while retaining the traffic inspection

performance for malicious traffic such as that containing

viruses and ransomware in a large network.

II. NETWORK TRAFFIC MONITORING

Network traffic monitoring includes various administrative

operations to acquire network traffic information such as the

routing paths of traffic flows, the traffic volume, the

network/transport layer protocol types of the traffic flows, and

the payload size distribution of the packets in each flow. The

use of these various types of traffic information makes it

possible to infer the network topology and the network resource

status including the packet loss rates and congestion levels at

the switches and routers on the network. Once information

about the network traffic is gathered, it can be analyzed using

statistical and information-theoretical methodologies for

network operation and management. The analysis of the

dynamic patterns resulting from changes in the traffic statistics

allows a network administrator to detect abnormal operations

of network links and nodes and to exactly identify faulty links

and nodes. Subsequently, an appropriate management

operation can be conducted to resolve the networking problems.

For example, OpenNetMon was proposed to acquire the

flow-level network status such as throughput, delay, and packet

loss rate using the OpenFlow protocol for fine-grained traffic

engineering [3]. In addition, network traffic monitoring is also

an essential function of cyber security because malicious

network activities such as DDoS and port scanning generate

their own unique traffic patterns. Thus, security applications

can use the traffic patterns to defend the network system against

malicious threats. In [4], it was proposed to combine the

OpenFlow and sFlow3 protocols to gather flow-level traffic

statistics in order to detect and identify network anomalies such

as DDoS, worms, and port scanning attacks.

The use of network traffic monitoring requires the data

packets belonging to each traffic flow to be captured in order to

acquire information about these traffic flows. We consider two

approaches: partial-packet capturing (PPC) and full-packet

capturing (FPC). The former approach involves capturing and

storing the header of a packet because it contains the most

useful information about the flows. Optionally, PPC may

capture the first several bytes of the packet payload as well as

the header to obtain additional information about the contents

of the packet payload. sFlow and NetFlow 4 are the most

popular monitoring solutions for PPC. Because PPC captures at

most the first two hundred bytes of each packet, the size of each

report for the captured packets is much smaller than that of the

original packets. If the reports of multiple packets are

compressed before delivery to the traffic collector, the amount

of additional traffic generated for network monitoring is further

reduced. However, PPC can be limitedly used for malware

inspection such as the detection of a computer virus, malicious

code injection, and ransomware detection. On the other hand,

3 sFlow: http://www.sflow.org
4 NetFlow: http://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-

netflow/index.html

FPC captures both the header and payload of a packet. Because

it is possible to analyze the payload as well as the information

specified in packet headers, a variety of network threats can be

inspected and prevented. For example, an IDS can be deployed

to inspect the payloads of data packets to detect potential

malware using a signature-based matching method, which

compares the payload of input packets with a number of known

malicious binary patterns [5]. However, FPC causes the amount

of traffic on the network to double and the resulting network

congestion may disrupt the traffic if every packet is captured,

and the header and payload of each packet are duplicated.

For network traffic monitoring, there exists a tradeoff

relationship between the network resource overhead and the

amount of information acquired for traffic inspection. As cyber

threats and attacks become more complicated, it is desirable

that network traffic monitoring systems are able to support the

FPC functionality for cases when traffic monitoring is required

for malware inspection.

III. NETWORK TRAFFIC MONITORING LOCATION

The location at which network traffic monitoring is

performed by capturing traffic packets is an important factor

that has a significant impact on the monitoring performance.

Ideally, any point on a network (i.e., all the switches and routers)

would need to be accessible to capture the network flows for

traffic inspection. In traditional networks, the number of traffic

monitoring devices (e.g., network tap and port mirror) is quite

limited, and feasible locations at which the devices are

deployed are also restricted.

Figure 1 shows two possible locations for traffic monitoring,

edge switches and core switches. Since the edge switches are

directly connected to client devices, the number of flows at

each switch is relatively small in comparison with that in

switches on the network backbone. As a result, it is easy to

achieve fine-grained traffic monitoring for the individual flows

that pass through each switch. However, since one capturing

device must be deployed at each edge switch, the number of

capturing devices required for network-wide traffic monitoring

would be considerable. This increase in the number of required

capturing devices would incur management overhead, and may

not be a feasible solution for a large network. As shown in Fig.

1, the core switches constitute the backbone of the network, and

can be connected to the network of an Internet service provider

(ISP). Since each core switch serves a number of flows at a high

Fig. 1 Packet capturing at edge switches versus core switches.

rate, high-performance capturing devices should be used for

full-rate traffic capturing. However, it would not be possible to

identify each traffic flow at the core switches without missing

packets in real-time. Note that the number of devices used for

traffic capturing is usually smaller than that required for traffic

capturing at edge switches, and they can be more easily

managed in a centralized manner. In addition, as shown in Fig.

1, at the core switches, it would not be possible to capture those

traffic flows that only pass through edge switches. Moreover,

some traffic flows may be unnecessarily captured more than

once at intermediate switches.

Figure 2 shows SDN-based traffic capturing. SDN

technology provides more flexible traffic monitoring by

mirroring and rerouting the traffic flows of interest. SDNs do

not necessitate discrimination between edge switches and core

switches. SDN-based traffic capturing obviates the need to

exploit hardware-based capturing devices; this capturing

method relies on the OF protocol to capture traffic packets. In

practice, this simply involves updating the flow table of each

switch using the OF protocol. In [6], a fast traffic monitoring

architecture (named Planck), which leverages the port

mirroring feature of switches, was proposed. A high sampling

rate is achieved by dividing N ports in a switch into m monitor

ports and (N-m) data ports, and data traffic is forwarded to one

of the monitoring ports. However, instead of using the

mirroring feature of the switch, if it is necessary to monitor a

specific traffic flow and capture data packets belonging to the

particular flow on SDN, the controller can simply duplicate the

traffic flow and forward the flow to a specific port of the switch

by using the “OUTPUT” action of the OF protocol. Once the

duplicated traffic is forwarded to the port, it can be steered to a

traffic collector by the SDN controller as for a normal traffic

flow.

IV. PROBABILISTIC PACKET SAMPLING

Probabilistic packet sampling is widely used in both PPC and

FPC for traffic monitoring to avoid excessive traffic overhead

on the network due to traffic duplication. Instead of capturing

every packet passing through a switch, it selectively captures a

certain number of packets from the traffic flows according to a

sampling policy. In [7], several sampling policies were

proposed and discussed in detail. Among them, the systematic

packet sampling (SPS) method captures every packet for a

sampling duration from a starting point in time, and

probabilistic packet sampling (PPS) is a method to

selectively capture packets from traffic flows with a uniform or

non-uniform probability p. For example, if p is 10 % for PPS,

only 10 % of packets are captured and the remaining 90 % are

simply discarded. In [8], an OpenFlow extension (named

FleXam) was proposed to support both SPS and PPS methods

with a variety of sampling options. In [9], OpenSample was

proposed to exploit the probabilistic packet sampling of the

sFlow protocol to achieve a fast flow-level traffic statistics

measurement on SDNs. Figure 2 shows an example of

probabilistic packet sampling on an SDN. For a given set of

sampling rates, the SDN controller updates the flow table of

each switch using the OF protocol. Then, the sampled traffic is

steered towards the traffic collector. As mentioned, since the

sampled traffic flows are newly generated flows, the SDN

controller has to compute less-congested flow paths to the

traffic collector and update the flow table of switches using the

computed routing paths.

The use of traffic-sampling techniques can lead to a

significant reduction in network overhead because sampled

traffic duplication can be significantly decreased. However,

there exists the risk of useful information not being acquired

from the discarded packets. Therefore, it is crucial to

appropriately decide the sampling rates for traffic monitoring

on the network. Two different approaches can be considered to

decide the sampling rate: per-flow (PF) sampling and

per-switch (PS) sampling. First, a different sampling rate can

be applied to each flow. It is possible to adjust the sampling rate

for each flow; therefore, fine-grained packet sampling is

possible by increasing and decreasing the sampling rate.

However, per-flow sampling of this nature may not be scalable

with respect to the number of flows on the network because

frequent updating of the flow table consumes substantial

network resources, and the memory space reserved for the flow

table in a switch is limited. In addition, the implementation and

running complexities for per-flow operations are also

significant [10]. Alternatively, each switch could use the same

sampling rate for every flow that passes through the switch.

Since the number of switches on a network does not change

dynamically, the operational complexity is much lower than

that of per-flow sampling. However, if the sampling rates are

not properly determined, some flows are either excessively

sampled at multiple switches or not sampled at all. The

sampling rate decision for the per-switch sampling rates that

approximate per-flow sampling rates is a challenging problem

with high computational complexity.

Fig. 2 Packet capturing on SDN with OF-enabled switches.

For malicious traffic inspection, we consider a probabilistic

full-packet sampling on SDNs. If a larger number of traffic

packets on the network were to be sampled with large sampling

rates, it would be possible to acquire a higher level of traffic

information for cyber security. However, it is more desirable to

restrict the value of sampling rates for the following reasons:

Network overhead: As the sampling rates increase, the

amount of sampled traffic increases proportionally. Because the

sampled traffic is forwarded to the traffic collector, it consumes

network resources and may incur network congestion, which

interferes with the data delivery of normal traffic flows.

Therefore, the number of duplicated packets for traffic

sampling should be maintained as small as possible for less

intrusive traffic monitoring.

Limited analysis capability: Traffic inspection is

conducted by analyzing the sampled traffic by security

applications such as IDS, which usually has limited processing

capability. If the rate of incoming traffic to the IDS exceeds its

capability, the IDS cannot process the incoming traffic without

dropping packets. Therefore, the amount of sampled traffic

should preferably not exceed the processing capacity of the

IDS.

V. SAMPLING POINT AND RATE DECISION

A. Sampling point decision

We propose a scalable packet-sampling point decision

scheme using a graph theoretic centrality measure, which

qualifies the relative importance of switches on the network.

Although packet samplings in every OF-enabled switch are

possible using OF on SDN, it is not desirable in a large-scale

network, because it may incur overhead caused by flow-table

processing at the SDN controller. Instead, a subset of switches

can be selected to perform packet sampling. In graph theory,

centrality measures such as degree, closeness, and betweenness

centrality indicate the relative importance of vertices in the

graph. The importance of a particular vertex can be quantified

based on its topological relationship among the other vertices

such as the number of neighboring vertices and the number of

edges required to reach each of the other vertices. The concept

of centrality measures has been applied to various areas such as

social networking to find the most influential person.

When computing the centrality measures, one may use the

same network topology as for physical links. However, that

approach may reflect the physical network topology itself

rather than the characteristics of flows. For traffic monitoring, it

would be more effective to use only active links that currently

serve the traffic flows rather than all the physical links in the

entire network. On SDNs, information about the flow paths is

readily available by using SDN northbound APIs. Furthermore,

it is more computationally efficient to calculate the centrality

measures using the number of active links rather than all the

physical links.

We propose the use of the betweenness centrality for

sampling point decision, which is defined as the number of

shortest paths that pass through the switch for all the node pairs

[11]. If any pair of nodes has k possible shortest paths, each

possible path is counted by 1/k rather than 1 in the computation

of the betweenness centrality. The betweenness centrality of a

switch is simply obtained by the number of flows that pass

through the switch. Figure 3 shows a simple network topology

with six switches and six flows and its corresponding flow

information matrix. The betweenness centrality can be easily

computed by the flow information provided by the SDN

controller. Let M denote the flow information matrix M = [mij],

where mij is a binary number. If the i-th flow passes through the

j-th switch, mij = 1; otherwise, mij = 0. Note that the dimension

of M is the number of flows by the number of switches. The

betweenness centrality for the j-th switch𝑐𝑗 = ∑ 𝑚𝑖𝑗𝑖 , (i.e., the

summation of the elements at the j-th column). The

betweenness centralities for the switches are given by 1, 3, 2, 2,

3, and 2.

Fig. 3 Simple network topology and the corresponding flow information matrix.

In addition to the original betweenness centrality, we propose

a new extended betweenness centrality to avoid an excessive

sampling of traffic flows passing through a few bottleneck

switches with high betweenness centrality. For example, if a

number of flows pass through multiple bottleneck switches, the

switches on the path would have a high betweenness centrality

and the flows would be unnecessarily sampled multiple times at

the switches. Note that, in general, switches located near the

core of the network have a high betweenness centrality. The

extended betweenness centrality is iteratively computed. Given

M, a single switch with a highest betweenness centrality is

selected. Then, all the flows that go through the selected switch

are excluded from M, and this procedure is repeated with the

updated M’ until there are no remaining flows on the flow

information matrix.

B. Sampling rate decision

Once the sampling points are selected, each switch has to be

allocated a sampling probability. It is also worthy to note that

the aggregated volume of sampled packets is retained below the

maximum IDS capability of C in bits/s. Let x denote the switch

sampling probability vector, where the k-th element of x is the

sampling probability of the k-th switch. In addition, let r and A

denote the flow-rate vector r = [ri], where ri is the data rate of

the i-th flow and the flow-rate information matrix A = [aij],

where aij = ri ∙ mij, respectively. We consider two possible

choices for per-switch sampling. First, x can be set by xk =
1

∑ 𝑎𝑖𝑗𝑖
∙

𝐶

of switches
 such that each switch may sample traffic

packets evenly at the same rate, which is equal to C divided by

the number of switches. Second, every switch may have the

same sampling probability, (i.e., xk =
𝐶

∑ ∑ 𝑎𝑖𝑗𝑗𝑖
). In this case, the

rate of sampled traffic at each switch is proportional to the

aggregated traffic rate passing through the switch.

In addition, it is also possible to arbitrarily control the

sampling of each individual flow by assigning a different

sampling probability to each switch. This flow-level sampling

is considered as a per-switch sampling technique that can

approximate per-flow sampling. Let b denote the target

sampling rate vector for the flows for the flow-level sampling.

Then, the sampling rate vector x is obtained by a solution that

satisfies 𝑨 ∙ 𝒙 = b. As in the above per-switch sampling, each

flow is sampled either evenly at the same rate by setting 𝒃 =
𝐶

of flows
∙ 1⃗ or at a rate that is proportional to its traffic rate by

setting 𝒃 =
𝐶

∑ 𝑟𝑗𝑗
 ∙ r. For the flow-level sampling, the solution x

can be obtained by using the pseudo-inverse of A, (i.e. x =
(ATA)-1ATb).

VI. SIMULATION

To evaluate the traffic sampling performance, we conducted

simulations using BRITE5 for generating a large-scale topology,

and Network Simulator 2 (ns-2) to simulate the network flows

for malicious packet detection scenarios. We created two types

of topologies, i.e., clustered transit-stub and grid-type mesh

topologies. Each network has 200 switches, and the number of

flows varies from 200 to 1000. Each flow has a random data

rate from 1 to 100 Mb/s, and it is assumed that 3% of total flows

are malicious. The IDS capacity for malicious packet

inspection is fixed at 1 Gb/s. The reported values are the

averages of 1000 simulation runs. Regarding the sampling

point decision, we compare the extended betweenness

centrality-based sampling point decision method with the

original betweenness centrality-based sampling point decision

and random point decision methods. For each sampling rate

decision, four sampling rate decision methods are evaluated:

even per-switch (PS) sampling, rate-proportional PS sampling,

even flow-level (FL) sampling, and rate-proportional FL

sampling.

Figure 4 shows the average capture failure rates of malicious

flows on transit-stub and mesh topologies. The capture failure

rate is computed under the assumption that the traffic rates of

normal and malicious flows are given [12]. The number of

sampling points is given by the proposed extended betweenness

centrality-based method, and the other methods select the same

number of sampling points. As the number of flows increases,

5 BRITE (Boston University Representative Internet Topology Generator):

https://www.cs.bu.edu/brite

(a) Transit-stub topology (b) Mesh topology

Fig. 4 Average capture failure rate on transit-stub and mesh topologies.

the capture failure rate increases because the number of

captured packets belonging to each flow decreases. Note that

the aggregate rate of sampled traffic is fixed at the inspection

capacity of 1 Gb/s. The number of sampling points only

includes 15 switches in the transit-stub topology and varies

from 35 to 60 switches in the mesh topology. The results show

that the proposed sampling point selection algorithm provides

the lowest capture failure rates among the three sampling point

decision methods. Regarding the sampling rate decision

method, the flow-level sampling methods perform more

effectively than the per-switch sampling methods in most cases.

However, when the sampling points are determined by the

proposed extended betweenness centrality-based method, the

three sampling rate decision methods show almost the same

capture failure rate.

Figure 5 shows the average capture failure rate for even FL

sampling when the number of sampling points varies for the

random selection and original betweenness centrality-based

methods. The number of sampling points for the proposed

method was 15 in the transit-stub topology and 55 out of 200

switches in mesh topology. The number of flows is 700 in each

topology. Since the probability that a flow will pass through

core switches connecting mesh topologies in the transit-stub

topology is high, this topology has fewer sampling points. The

result indicates that the proposed algorithm can achieve almost

the same performance with a much smaller number of sampling

points compared to the other methods.

VII. EXPERIMENT

We constructed an SDN-enabled testbed to evaluate the

traffic sampling performance. We consider signature-based

ransomware propagation detection using IDS. Because some

ransomware attacks use malicious toolkits such as Angler,

Neutrino, and RIG [13], their propagation can be detected by

inspecting whether the captured packets include the malicious

toolkit.

Figure 6(a) illustrates the topology of our SDN-enabled

testbed. It consists of six HP 2920 OF-enabled switches

(Open-Flow 1.3 supported), four Open vSwitches (OVSs)

running on Linux embedded boxes, two HP workstations (one

HP workstation for the SDN controller and the other for IDS),

and 15 host PCs. The SDN controller is configured with the

helium version of OpenDaylight. Snort IDS is used to inspect

the traffic for detecting malicious attacks. Snort is an

open-source IDS that inspects network traffic using a variety of

rulesets and generates security alarms when suspicious network

activities are detected. In the experiment, the number of flows

is 15, and their data rate varies from 5 to 50 Mb/s. Two

malicious flows are added with a rate of 30 and 40 Mb/s,

respectively. The IDS detects the ransomware propagation

using Snort rulesets for malicious toolkit signatures. The SDN

controller updates the sampling probabilities of OF-enabled

switches either when it receives an ‘OFPT_PACKET_IN’

message for newly added flows or when it detects changes in

the data rate of current data flows in service.

Figure 6(b) shows the rates of malicious traffic forwarded to

the IDS. Initially, there are 15 flows. After 10 seconds, two

malicious flows are generated by attackers. The SDN controller

detects the two new flows and calculates the sampling points

and rates for the switches. The traffic sampling is stabilized in 2

seconds as shown in Fig. 6(b). The proposed sampling point

decision method captures malicious flows at higher data rates

than the method that samples from every switch. It is also

observed that rate-proportional FL sampling achieves higher

data rates than even FL sampling in this network configuration.

VIII. CONCLUSION

Network traffic monitoring plays an increasingly important

role in cyber security. Unlike traditional networking systems,

the SDN technology provides programmable functionalities

that enable OF-enabled switches to perform probabilistic traffic

sampling and to steer the sampled traffic towards a traffic

collector for network traffic inspection. In this article, we

focused on a scalable traffic sampling point and rate decision

scheme that uses a centrality measure to allow the network

traffic to be secured with low monitoring overhead. The

simulation and experimental results demonstrated that the

proposed method achieves less-intrusive monitoring and

decreases the malicious flow capture failure rate in a scalable

manner.

(a) Transit-stub topology (b) Mesh topology

Fig. 5 Performance comparison with respect to the number of sampling points.

REFERENCES

[1] K. Cabaj and W. Mazurczyk, Using Software-Defined Networking for

Ransomware Mitigation: The Case of CryptoWall, IEEE Network,
November/December 2016, pp. 12-19.

[2] N. Scaife et al., CryptoLock (and Drop It): Stopping Ransomware

Attacks on User Data, Proc. IEEE Int'l Conf. Distrib. Comp. Sys., June
2016, pp. 303-12.

[3] N. L. M. van Adrichem et al., OpenNetMon: Network Monitoring in

Openflow Software-Defined Networks, Network Operations and
Management Symposium, May 2014.

[4] K. Gioties et al., Combining OpenFlow and sFlow for an Effective and

Scalable Anomaly Detection and Mitigation Mechanism on SDN
Environments, Elsevier Computer Networks, vol. 62, December 2013, pp.

122–36.

[5] C. Xu et al., A Survey on Regular Expression Matching for Deep Packet
Inspection: Applications, Algorithms, and Hardware Platforms, IEEE

Commun. Surveys & Tutorials, vol. 18, May 2016, pp. 2991-3029.

[6] J. Rasely et al., Planck: Millisecond-scale Monitoring and Control for
Commodity Networks, Proc. ACM conf. SIGCOMM, August 2014, pp.

407-18.

[7] M. Korczynski et al., An Accurate Sampling Scheme for Detecting SYN
Flooding Attacks and Portscans, IEEE Int'l. Conf. Commun., June 2011,

pp. 1-5.

[8] S. Shirali-Shahreza and Y. Ganjali, FleXam: Flexible Sampling
Extension for Monitoring and Security Applications in OpenFlow, Proc.

ACM SIGCOMM Wksp. Hot Topics in Software Defined Networking,

August 2013, pp. 167–8.
[9] J. Suh et al., OpenSample: A Low-latency, Sampling-based

Measurement Platform for Commodity SDN, Proc. IEEE Int’l Conf.

Distrib. Comp. Sys., July 2014, pp. 228-37.
[10] Y. Liu et al., On the Resource Trade-off of Flow Update in

Software-Defined Networks. IEEE Commun. Mag., vol. 54, June 2016,

pp. 88–93.
[11] L. C. Freeman, A Set of Measures of Centrality based on Betweenness,

Sociometry, vol. 40, March 1977, pp. 35–41.

[12] T. Ha et al., Suspicious Traffic Sampling for Intrusion Detection in
Software-Defined Networks, Elsevier Computer Networks, vol. 109,

November 2016, pp 172-82.

[13] R. Brewer, Ransomware Attacks: Detection, Prevention and Cure,
Elsevier Network Security, vol. 2016, September 2016, pp. 5-9.

(a) SDN testbed topology (b) Captured malicious traffic rate

Fig. 6 SDN testbed topology and the rates of captured malicious traffic.

