
 

Abstract— With regard to cyber security, pervasive traffic 

visibility is one of the most essential functionalities for complex 

network systems. A traditional network system has limited access 

to core and edge switches on the network; on the other hand, 

software-defined network (SDN) technology can provide flexible 

and programmable network management operations. In this 

paper, we consider the practical problem concerning how to 

achieve scalable traffic measurement using SDN functionalities. 

Less-intrusive traffic monitoring can be achieved by using a 

packet-sampling technique that probabilistically captures data 

packets at switches, and the sampled traffic is steered towards a 

traffic analyzer such as an intrusion detection system (IDS) on 

SDN. We propose the use of a centrality measure in graph theory 

for deciding the traffic sampling points among the switches. In 

addition, we discuss how to decide the traffic sampling rates at the 

selected switches. The results of the simulation and SDN testbed 

experiments indicate that the proposed sampling point and rate 

decision methods enhance the intrusion detection performance of 

an IDS in terms of malicious traffic flows in large-scale networks. 

I. INTRODUCTION 

s the population of Internet users continues to grow, the 

number of devices connected to the Internet is increasing 

rapidly. Because of this explosive expansion of the network 

scale, there exists huge demand for flexible and scalable 

network management. Moreover, cyber security for home and 

enterprise networks has become more important because our 

daily data applications and access to services such as banking, 

shopping, business, education, and transportation are provided 

via the Internet. One of the rapidly increasing threats is 

ransomware, which is computer malware that executes a 

cryptovirology attack and demands a ransom payment to 

restore the damage [1, 2]. These malware propagations via the 

Internet can be prevented by capturing suspicious packets on 

the network and inspecting them by using security application 

solutions such as an intrusion detection system (IDS). Usually, 

IDSs are deployed on networks in data centers. These systems 

are connected to edge or core switches, and are used to monitor 

network traffic patterns and inspect data packets in order to 

detect malicious activities.  

A software-defined network (SDN) 1  is a promising 

technology that can provide flexibility, robustness, and 

programmability. Briefly, the principal concept of SDN is to 

decouple the network control plane from the data-forwarding 

plane. Forwarding decisions in traditional networks are made 
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by a routing algorithm in each switch; on the other hand, the 

controller on an SDN is responsible for controlling the 

forwarding operations of the switches in a centralized manner. 

In this regard, the OpenFlow (OF)2 protocol is one of the most 

popular protocols used for communication between the SDN 

controller (for the control plane) and SDN-enabled switches 

(for the data plane). Owing to this flexibility and 

programmability, SDN technology can be applied to cyber 

security network applications as well as high-performance data 

center networks. For example, the SDN controller can enable a 

switch to duplicate the traffic flow of interest and steer the 

traffic towards a traffic collector by simply updating the 

forwarding table of the switch via an OF protocol. Network 

programmability such as traffic duplication and rerouting can 

facilitate the implementation of traffic-monitoring operations 

for cyber security. In [1], a ransomware mitigation method that 

exploits SDN functionalities was proposed. It uses the SDN 

functionality for forwarding/steering traffic in order to inspect 

all the DNS traffic packets (that may include the DNS query for 

ransomware proxy servers) and the traffic duplication 

functionality to implement the DNS packet inspection without 

incurring delays in the DNS response time.  

Another important problem associated with network traffic 

monitoring is the acquisition of network traffic packets in a 

less-intrusive manner. If every packet belonging to a traffic 

flow is captured and forwarded to a traffic collector, the amount 

of traffic that is newly generated for traffic monitoring purposes 

would be the same as that of the original traffic, and may cause 

significant congestion on the network. For less-intrusive 

monitoring, it would be desirable to selectively capture traffic 

packets rather than capturing every packet at the switches. This 

method is known as packet sampling and can be implemented 

in several ways. Given information about the network topology 

and traffic flows, it is essential to decide where to sample traffic 

and how much traffic is sampled at each of the selected 

switches when the total amount of sampled traffic is bounded 

for less-intrusive traffic monitoring. In terms of deciding the 

sampling points, we propose the use of a centrality measure in 

graph theory for exploiting the network topology and flow 

information. The use of a centrality measure enables us to select 

switches with relatively higher importance. Once a subset of 

switches is chosen, packets passing through each switch can be 

sampled at a certain rate in a fair manner. The results of the 

simulation and SDN testbed experiments show that the 

proposed approach can significantly reduce the sampling points 
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on the network while retaining the traffic inspection 

performance for malicious traffic such as that containing 

viruses and ransomware in a large network. 

II. NETWORK TRAFFIC MONITORING 

Network traffic monitoring includes various administrative 

operations to acquire network traffic information such as the 

routing paths of traffic flows, the traffic volume, the 

network/transport layer protocol types of the traffic flows, and 

the payload size distribution of the packets in each flow. The 

use of these various types of traffic information makes it 

possible to infer the network topology and the network resource 

status including the packet loss rates and congestion levels at 

the switches and routers on the network. Once information 

about the network traffic is gathered, it can be analyzed using 

statistical and information-theoretical methodologies for 

network operation and management. The analysis of the 

dynamic patterns resulting from changes in the traffic statistics 

allows a network administrator to detect abnormal operations 

of network links and nodes and to exactly identify faulty links 

and nodes. Subsequently, an appropriate management 

operation can be conducted to resolve the networking problems. 

For example, OpenNetMon was proposed to acquire the 

flow-level network status such as throughput, delay, and packet 

loss rate using the OpenFlow protocol for fine-grained traffic 

engineering [3]. In addition, network traffic monitoring is also 

an essential function of cyber security because malicious 

network activities such as DDoS and port scanning generate 

their own unique traffic patterns. Thus, security applications 

can use the traffic patterns to defend the network system against 

malicious threats. In [4], it was proposed to combine the 

OpenFlow and sFlow3 protocols to gather flow-level traffic 

statistics in order to detect and identify network anomalies such 

as DDoS, worms, and port scanning attacks. 

The use of network traffic monitoring requires the data 

packets belonging to each traffic flow to be captured in order to 

acquire information about these traffic flows. We consider two 

approaches: partial-packet capturing (PPC) and full-packet 

capturing (FPC). The former approach involves capturing and 

storing the header of a packet because it contains the most 

useful information about the flows. Optionally, PPC may 

capture the first several bytes of the packet payload as well as 

the header to obtain additional information about the contents 

of the packet payload. sFlow and NetFlow 4  are the most 

popular monitoring solutions for PPC. Because PPC captures at 

most the first two hundred bytes of each packet, the size of each 

report for the captured packets is much smaller than that of the 

original packets. If the reports of multiple packets are 

compressed before delivery to the traffic collector, the amount 

of additional traffic generated for network monitoring is further 

reduced. However, PPC can be limitedly used for malware 

inspection such as the detection of a computer virus, malicious 

code injection, and ransomware detection. On the other hand, 
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FPC captures both the header and payload of a packet. Because 

it is possible to analyze the payload as well as the information 

specified in packet headers, a variety of network threats can be 

inspected and prevented. For example, an IDS can be deployed 

to inspect the payloads of data packets to detect potential 

malware using a signature-based matching method, which 

compares the payload of input packets with a number of known 

malicious binary patterns [5]. However, FPC causes the amount 

of traffic on the network to double and the resulting network 

congestion may disrupt the traffic if every packet is captured, 

and the header and payload of each packet are duplicated.  

For network traffic monitoring, there exists a tradeoff 

relationship between the network resource overhead and the 

amount of information acquired for traffic inspection. As cyber 

threats and attacks become more complicated, it is desirable 

that network traffic monitoring systems are able to support the 

FPC functionality for cases when traffic monitoring is required 

for malware inspection. 

III. NETWORK TRAFFIC MONITORING LOCATION 

The location at which network traffic monitoring is 

performed by capturing traffic packets is an important factor 

that has a significant impact on the monitoring performance. 

Ideally, any point on a network (i.e., all the switches and routers) 

would need to be accessible to capture the network flows for 

traffic inspection. In traditional networks, the number of traffic 

monitoring devices (e.g., network tap and port mirror) is quite 

limited, and feasible locations at which the devices are 

deployed are also restricted.  

Figure 1 shows two possible locations for traffic monitoring, 

edge switches and core switches. Since the edge switches are 

directly connected to client devices, the number of flows at 

each switch is relatively small in comparison with that in 

switches on the network backbone. As a result, it is easy to 

achieve fine-grained traffic monitoring for the individual flows 

that pass through each switch. However, since one capturing 

device must be deployed at each edge switch, the number of 

capturing devices required for network-wide traffic monitoring 

would be considerable. This increase in the number of required 

capturing devices would incur management overhead, and may 

not be a feasible solution for a large network. As shown in Fig. 

1, the core switches constitute the backbone of the network, and 

can be connected to the network of an Internet service provider 

(ISP). Since each core switch serves a number of flows at a high 

Fig. 1 Packet capturing at edge switches versus core switches. 



rate, high-performance capturing devices should be used for 

full-rate traffic capturing. However, it would not be possible to 

identify each traffic flow at the core switches without missing 

packets in real-time. Note that the number of devices used for 

traffic capturing is usually smaller than that required for traffic 

capturing at edge switches, and they can be more easily 

managed in a centralized manner. In addition, as shown in Fig. 

1, at the core switches, it would not be possible to capture those 

traffic flows that only pass through edge switches. Moreover, 

some traffic flows may be unnecessarily captured more than 

once at intermediate switches.  

Figure 2 shows SDN-based traffic capturing. SDN 

technology provides more flexible traffic monitoring by 

mirroring and rerouting the traffic flows of interest. SDNs do 

not necessitate discrimination between edge switches and core 

switches. SDN-based traffic capturing obviates the need to 

exploit hardware-based capturing devices; this capturing 

method relies on the OF protocol to capture traffic packets. In 

practice, this simply involves updating the flow table of each 

switch using the OF protocol. In [6], a fast traffic monitoring 

architecture (named Planck), which leverages the port 

mirroring feature of switches, was proposed. A high sampling 

rate is achieved by dividing N ports in a switch into m monitor 

ports and (N-m) data ports, and data traffic is forwarded to one 

of the monitoring ports. However, instead of using the 

mirroring feature of the switch, if it is necessary to monitor a 

specific traffic flow and capture data packets belonging to the 

particular flow on SDN, the controller can simply duplicate the 

traffic flow and forward the flow to a specific port of the switch 

by using the “OUTPUT” action of the OF protocol. Once the 

duplicated traffic is forwarded to the port, it can be steered to a 

traffic collector by the SDN controller as for a normal traffic 

flow. 

IV. PROBABILISTIC PACKET SAMPLING 

Probabilistic packet sampling is widely used in both PPC and 

FPC for traffic monitoring to avoid excessive traffic overhead 

on the network due to traffic duplication. Instead of capturing 

every packet passing through a switch, it selectively captures a 

certain number of packets from the traffic flows according to a 

sampling policy. In [7], several sampling policies were 

proposed and discussed in detail. Among them, the systematic 

packet sampling (SPS) method captures every packet for a 

sampling duration from a starting point in time, and 

probabilistic packet sampling (PPS) is a method to 

selectively capture packets from traffic flows with a uniform or 

non-uniform probability p. For example, if p is 10 % for PPS, 

only 10 % of packets are captured and the remaining 90 % are 

simply discarded. In [8], an OpenFlow extension (named 

FleXam) was proposed to support both SPS and PPS methods 

with a variety of sampling options. In [9], OpenSample was 

proposed to exploit the probabilistic packet sampling of the 

sFlow protocol to achieve a fast flow-level traffic statistics 

measurement on SDNs. Figure 2 shows an example of 

probabilistic packet sampling on an SDN. For a given set of 

sampling rates, the SDN controller updates the flow table of 

each switch using the OF protocol. Then, the sampled traffic is 

steered towards the traffic collector. As mentioned, since the 

sampled traffic flows are newly generated flows, the SDN 

controller has to compute less-congested flow paths to the 

traffic collector and update the flow table of switches using the 

computed routing paths. 

The use of traffic-sampling techniques can lead to a 

significant reduction in network overhead because sampled 

traffic duplication can be significantly decreased. However, 

there exists the risk of useful information not being acquired 

from the discarded packets. Therefore, it is crucial to 

appropriately decide the sampling rates for traffic monitoring 

on the network. Two different approaches can be considered to 

decide the sampling rate: per-flow (PF) sampling and 

per-switch (PS) sampling. First, a different sampling rate can 

be applied to each flow. It is possible to adjust the sampling rate 

for each flow; therefore, fine-grained packet sampling is 

possible by increasing and decreasing the sampling rate. 

However, per-flow sampling of this nature may not be scalable 

with respect to the number of flows on the network because 

frequent updating of the flow table consumes substantial 

network resources, and the memory space reserved for the flow 

table in a switch is limited. In addition, the implementation and 

running complexities for per-flow operations are also 

significant [10]. Alternatively, each switch could use the same 

sampling rate for every flow that passes through the switch. 

Since the number of switches on a network does not change 

dynamically, the operational complexity is much lower than 

that of per-flow sampling. However, if the sampling rates are 

not properly determined, some flows are either excessively 

sampled at multiple switches or not sampled at all. The 

sampling rate decision for the per-switch sampling rates that 

approximate per-flow sampling rates is a challenging problem 

with high computational complexity.  

Fig. 2 Packet capturing on SDN with OF-enabled switches. 

 



For malicious traffic inspection, we consider a probabilistic 

full-packet sampling on SDNs. If a larger number of traffic 

packets on the network were to be sampled with large sampling 

rates, it would be possible to acquire a higher level of traffic 

information for cyber security. However, it is more desirable to 

restrict the value of sampling rates for the following reasons: 

Network overhead: As the sampling rates increase, the 

amount of sampled traffic increases proportionally. Because the 

sampled traffic is forwarded to the traffic collector, it consumes 

network resources and may incur network congestion, which 

interferes with the data delivery of normal traffic flows. 

Therefore, the number of duplicated packets for traffic 

sampling should be maintained as small as possible for less 

intrusive traffic monitoring. 

Limited analysis capability: Traffic inspection is 

conducted by analyzing the sampled traffic by security 

applications such as IDS, which usually has limited processing 

capability. If the rate of incoming traffic to the IDS exceeds its 

capability, the IDS cannot process the incoming traffic without 

dropping packets. Therefore, the amount of sampled traffic 

should preferably not exceed the processing capacity of the 

IDS.  

V. SAMPLING POINT AND RATE DECISION  

A. Sampling point decision 

We propose a scalable packet-sampling point decision 

scheme using a graph theoretic centrality measure, which 

qualifies the relative importance of switches on the network. 

Although packet samplings in every OF-enabled switch are 

possible using OF on SDN, it is not desirable in a large-scale 

network, because it may incur overhead caused by flow-table 

processing at the SDN controller. Instead, a subset of switches 

can be selected to perform packet sampling. In graph theory, 

centrality measures such as degree, closeness, and betweenness 

centrality indicate the relative importance of vertices in the 

graph. The importance of a particular vertex can be quantified 

based on its topological relationship among the other vertices 

such as the number of neighboring vertices and the number of 

edges required to reach each of the other vertices. The concept 

of centrality measures has been applied to various areas such as 

social networking to find the most influential person. 

When computing the centrality measures, one may use the 

same network topology as for physical links. However, that 

approach may reflect the physical network topology itself 

rather than the characteristics of flows. For traffic monitoring, it 

would be more effective to use only active links that currently 

serve the traffic flows rather than all the physical links in the 

entire network. On SDNs, information about the flow paths is 

readily available by using SDN northbound APIs. Furthermore, 

it is more computationally efficient to calculate the centrality 

measures using the number of active links rather than all the 

physical links. 

We propose the use of the betweenness centrality for 

sampling point decision, which is defined as the number of 

shortest paths that pass through the switch for all the node pairs 

[11]. If any pair of nodes has k possible shortest paths, each 

possible path is counted by 1/k rather than 1 in the computation 

of the betweenness centrality. The betweenness centrality of a 

switch is simply obtained by the number of flows that pass 

through the switch. Figure 3 shows a simple network topology 

with six switches and six flows and its corresponding flow 

information matrix. The betweenness centrality can be easily 

computed by the flow information provided by the SDN 

controller. Let M denote the flow information matrix M = [mij], 

where mij is a binary number. If the i-th flow passes through the 

j-th switch, mij = 1; otherwise, mij = 0. Note that the dimension 

of M is the number of flows by the number of switches. The 

betweenness centrality for the j-th switch𝑐𝑗 = ∑ 𝑚𝑖𝑗𝑖 , (i.e., the 

summation of the elements at the j-th column). The 

betweenness centralities for the switches are given by 1, 3, 2, 2, 

3, and 2.  

Fig. 3 Simple network topology and the corresponding flow information matrix. 



In addition to the original betweenness centrality, we propose 

a new extended betweenness centrality to avoid an excessive 

sampling of traffic flows passing through a few bottleneck 

switches with high betweenness centrality. For example, if a 

number of flows pass through multiple bottleneck switches, the 

switches on the path would have a high betweenness centrality 

and the flows would be unnecessarily sampled multiple times at 

the switches. Note that, in general, switches located near the 

core of the network have a high betweenness centrality. The 

extended betweenness centrality is iteratively computed. Given 

M, a single switch with a highest betweenness centrality is 

selected. Then, all the flows that go through the selected switch 

are excluded from M, and this procedure is repeated with the 

updated M’ until there are no remaining flows on the flow 

information matrix. 

B. Sampling rate decision 

Once the sampling points are selected, each switch has to be 

allocated a sampling probability. It is also worthy to note that 

the aggregated volume of sampled packets is retained below the 

maximum IDS capability of C in bits/s. Let x denote the switch 

sampling probability vector, where the k-th element of x is the 

sampling probability of the k-th switch. In addition, let r and A 

denote the flow-rate vector r = [ri], where ri is the data rate of 

the i-th flow and the flow-rate information matrix A = [aij], 

where aij = ri ∙ mij, respectively. We consider two possible 

choices for per-switch sampling. First, x can be set by xk = 
1

∑ 𝑎𝑖𝑗𝑖
∙

𝐶

# of switches
 such that each switch may sample traffic 

packets evenly at the same rate, which is equal to C divided by 

the number of switches. Second, every switch may have the 

same sampling probability, (i.e., xk = 
𝐶

∑ ∑ 𝑎𝑖𝑗𝑗𝑖
). In this case, the 

rate of sampled traffic at each switch is proportional to the 

aggregated traffic rate passing through the switch.  

In addition, it is also possible to arbitrarily control the 

sampling of each individual flow by assigning a different 

sampling probability to each switch. This flow-level sampling 

is considered as a per-switch sampling technique that can 

approximate per-flow sampling. Let b denote the target 

sampling rate vector for the flows for the flow-level sampling. 

Then, the sampling rate vector x is obtained by a solution that 

satisfies 𝑨 ∙ 𝒙 = b. As in the above per-switch sampling, each 

flow is sampled either evenly at the same rate by setting 𝒃 =
𝐶

# of flows
∙ 1⃗  or at a rate that is proportional to its traffic rate by 

setting 𝒃 =
𝐶

∑ 𝑟𝑗𝑗
 ∙ r. For the flow-level sampling, the solution x 

can be obtained by using the pseudo-inverse of A, (i.e. x = 
(ATA)-1ATb).  

VI. SIMULATION 

To evaluate the traffic sampling performance, we conducted 

simulations using BRITE5 for generating a large-scale topology, 

and Network Simulator 2 (ns-2) to simulate the network flows 

for malicious packet detection scenarios. We created two types 

of topologies, i.e., clustered transit-stub and grid-type mesh 

topologies. Each network has 200 switches, and the number of 

flows varies from 200 to 1000. Each flow has a random data 

rate from 1 to 100 Mb/s, and it is assumed that 3% of total flows 

are malicious. The IDS capacity for malicious packet 

inspection is fixed at 1 Gb/s. The reported values are the 

averages of 1000 simulation runs. Regarding the sampling 

point decision, we compare the extended betweenness 

centrality-based sampling point decision method with the 

original betweenness centrality-based sampling point decision 

and random point decision methods. For each sampling rate 

decision, four sampling rate decision methods are evaluated: 

even per-switch (PS) sampling, rate-proportional PS sampling, 

even flow-level (FL) sampling, and rate-proportional FL 

sampling.  

Figure 4 shows the average capture failure rates of malicious 

flows on transit-stub and mesh topologies. The capture failure 

rate is computed under the assumption that the traffic rates of 

normal and malicious flows are given [12]. The number of 

sampling points is given by the proposed extended betweenness 

centrality-based method, and the other methods select the same 

number of sampling points. As the number of flows increases, 

 
5 BRITE (Boston University Representative Internet Topology Generator): 

https://www.cs.bu.edu/brite 

(a) Transit-stub topology                                                                     (b) Mesh topology 

Fig. 4 Average capture failure rate on transit-stub and mesh topologies. 



the capture failure rate increases because the number of 

captured packets belonging to each flow decreases. Note that 

the aggregate rate of sampled traffic is fixed at the inspection 

capacity of 1 Gb/s. The number of sampling points only 

includes 15 switches in the transit-stub topology and varies 

from 35 to 60 switches in the mesh topology. The results show 

that the proposed sampling point selection algorithm provides 

the lowest capture failure rates among the three sampling point 

decision methods. Regarding the sampling rate decision 

method, the flow-level sampling methods perform more 

effectively than the per-switch sampling methods in most cases. 

However, when the sampling points are determined by the 

proposed extended betweenness centrality-based method, the 

three sampling rate decision methods show almost the same 

capture failure rate. 

Figure 5 shows the average capture failure rate for even FL 

sampling when the number of sampling points varies for the 

random selection and original betweenness centrality-based 

methods. The number of sampling points for the proposed 

method was 15 in the transit-stub topology and 55 out of 200 

switches in mesh topology. The number of flows is 700 in each 

topology. Since the probability that a flow will pass through 

core switches connecting mesh topologies in the transit-stub 

topology is high, this topology has fewer sampling points. The 

result indicates that the proposed algorithm can achieve almost 

the same performance with a much smaller number of sampling 

points compared to the other methods. 

VII. EXPERIMENT  

We constructed an SDN-enabled testbed to evaluate the 

traffic sampling performance. We consider signature-based 

ransomware propagation detection using IDS. Because some 

ransomware attacks use malicious toolkits such as Angler, 

Neutrino, and RIG [13], their propagation can be detected by 

inspecting whether the captured packets include the malicious 

toolkit. 

Figure 6(a) illustrates the topology of our SDN-enabled 

testbed. It consists of six HP 2920 OF-enabled switches 

(Open-Flow 1.3 supported), four Open vSwitches (OVSs) 

running on Linux embedded boxes, two HP workstations (one 

HP workstation for the SDN controller and the other for IDS), 

and 15 host PCs. The SDN controller is configured with the 

helium version of OpenDaylight. Snort IDS is used to inspect 

the traffic for detecting malicious attacks. Snort is an 

open-source IDS that inspects network traffic using a variety of 

rulesets and generates security alarms when suspicious network 

activities are detected. In the experiment, the number of flows 

is 15, and their data rate varies from 5 to 50 Mb/s. Two 

malicious flows are added with a rate of 30 and 40 Mb/s, 

respectively. The IDS detects the ransomware propagation 

using Snort rulesets for malicious toolkit signatures. The SDN 

controller updates the sampling probabilities of OF-enabled 

switches either when it receives an ‘OFPT_PACKET_IN’ 

message for newly added flows or when it detects changes in 

the data rate of current data flows in service. 

Figure 6(b) shows the rates of malicious traffic forwarded to 

the IDS. Initially, there are 15 flows. After 10 seconds, two 

malicious flows are generated by attackers. The SDN controller 

detects the two new flows and calculates the sampling points 

and rates for the switches. The traffic sampling is stabilized in 2 

seconds as shown in Fig. 6(b). The proposed sampling point 

decision method captures malicious flows at higher data rates 

than the method that samples from every switch. It is also 

observed that rate-proportional FL sampling achieves higher 

data rates than even FL sampling in this network configuration.  

VIII. CONCLUSION  

Network traffic monitoring plays an increasingly important 

role in cyber security. Unlike traditional networking systems, 

the SDN technology provides programmable functionalities 

that enable OF-enabled switches to perform probabilistic traffic 

sampling and to steer the sampled traffic towards a traffic 

collector for network traffic inspection. In this article, we 

focused on a scalable traffic sampling point and rate decision 

scheme that uses a centrality measure to allow the network 

traffic to be secured with low monitoring overhead. The 

simulation and experimental results demonstrated that the 

proposed method achieves less-intrusive monitoring and 

decreases the malicious flow capture failure rate in a scalable 

manner. 

(a) Transit-stub topology                                                                (b) Mesh topology 

Fig. 5 Performance comparison with respect to the number of sampling points. 
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