
Poster: Cyber-Function Virtualization for Mobile
Cyber-Physical Systems

Sunghwan Kim, Yohan Kim, and Hyuk Lim
Gwangju Institute of Science and Technology (GIST)

Gwangju 61005, Republic of Korea

{sunghwankim, yohankim, hlim}@gist.ac.kr

ABSTRACT

In this paper, we propose virtualization based cyber-functions
for mobile cyber-physical systems (CPSs). If a physical ob-
ject of a CPS has a high level of mobility, and as the net-
work path length from the cyber-function box gets larger,
it becomes very difficult to satisfy the data exchange delay
requirement. The proposed scheme can perform the migra-
tion of the cyber-functions to an appropriate location on the
cyber-infrastructure using virtualization techniques.

Keywords

Mobile controller; cyber-physical system; virtualization

1. INTRODUCTION
A cyber-physical system (CPS) is a tightly-coupled inter-

active system between cyber-functions and physical objects.
The cyber-functions provide a variety of data and control
services for physical objects. For example, in a smart trans-
portation system, vehicles are the physical objects controlled
by management software in cloud based cyber-infrastructure,
and these physical objects are connected to cyber-functions
through wired or wireless data networks.

Most CPSs have a certain requirement for network qual-
ity of service (QoS) because the physical dynamics of CPSs
should be controlled for stabilization. If the network delay
between the cyber-functions and the physical objects is too
large, the physical object can easily become unstable. In
mobile CPSs where physical objects have a certain level of
mobility, it is much difficult to keep providing sufficient QoS
for stabilizing the physical objects.

2. CYBER-FUNCTION VIRTUALIZATION
We propose a mobile cyber-function virtualization (CFV)

technique, which virtualizes cyber-functions such as feed-
back control and enables the migration of cyber-functions to
an appropriate location on cyber-infrastructure to satisfy the
QoS for physical systems. Cyber-functions can be virtual-

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

MobiSys ’16 Companion, June 25–30, 2016, Singapore.

c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4416-6/16/06..

DOI: http://dx.doi.org/10.1145/2938559.2938591

Figure 1: Migration of cyber-function for a flying

drone.

ized and migrated using a virtual machine (VM) hypervisor
or Linux container technique [1]. Figure 1 illustrates a CPS
scenario, wherein a drone flies from the bottom right corner
to the top left corner. Before the movement, the drone is
controlled by the access point (AP) at the right corner on
the top. However, the delay constraint is not satisfied as the
drone flies by. The migration is performed to an AP that is
close to the new position of the drone.

3. SYSTEM IMPLEMENTATION
We implemented the testbed illustrated in Figure 1 us-

ing a software-defined-networking (SDN) environment. The
testbed comprised HP 2920 switches (OpenFlow 1.3 sup-
ported), Odroid XU4 embedded boards, and Netgear wire-
less routers. The devices were connected to and managed
by an OpenDayLight SDN controller [2]. The movement of
flying drones was emulated, and the cyber-function for the
drone controller was implemented using a Linux container.
The delay constraint was set to 5 ms. The end-to-end delay
on average was 4 ms. The migration downtime of the cyber-
function container was 1.6 s between two virtualized Linux
boxes.

4. ACKNOWLEDGMENTS
This work was partly supported by IITP grant funded

by the Korea government (MSIP) (No. B0101-15-0557, Re-
silient Cyber-Physical Systems Research, and No. R7117-16-
0218, Development of Automated SaaS Compatibility Tech-
niques over Hybrid/Multisite Clouds).

5. REFERENCES
[1] Linux container. https://linuxcontainers.org.

[2] OpenDayLight (ODL). http://www.opendaylight.org.


