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Abstract

Within a macrocell with a large coverage area, multiple $cells are deployed such that each small
cell base station (SBS) supports wireless service demands tiser equipments (UEs). Each UE can
be simultaneously served by multiple SBSs for quality of/®er (QoS) enhancement. When there exist
hotspot areas with a number of UEs, the SBSs near the hotggad may experience a higher resource
utilization level than those outside of the hotspot areasulting in a shortage of available resources.
We propose a robust resource-utilization-based coorelinaansmission for heterogeneous networks
with a locally different level of traffic demands. In the i#dtion-based coordinated transmission, low-
utilization SBSs with a small number of UEs are selected toesa newly joining UE because they
have more capacity to serve requests with bursty traffic deim@/e further formulate the selection of
cooperative SBSs as a robust optimization problem in om@mnsure that UEs have sufficiently high
signal-to-interference-plus-noise ratios (SINRs), ewdth channel estimation inaccuracy and strong
interference from noncooperative SBSs. The simulationltgéndicate that the proposed method guar-

antees robust and efficient service performance in hetasmges small cell networks.
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I. INTRODUCTION

In a macrocell with a large coverage area, it will be diffictdt a single macrocell base
station (MBS) to satisfy high traffic demand and quality ofveee (QoS) requirements for user
equipments (UEs) when the MBS becomes overloaded with sixeeservice requests from
UEs. In order to prevent a single MBS from being overwhelméth wervice requests, multiple
base stations (BSs) with low transmit power can be deployigldirwa macrocell [1], [2]. In
general, this heterogeneous network consists of a singbearell and multiple small cells, and
the BS in each small cell is intended to provide wirelessiserin certain small areas with
high traffic demand, such as a hotspot area. Because the toaftl is distributed over multiple
BSs, a heterogeneous network can achieve better netwdidripa@nce than a single macrocell.
However, because each small cell base station (SBS) ususslya low transmit power to avoid
interfering with UEs associated with an MBS, the UEs servedhe single SBS may not have
signal-to-interference-plus-noise ratios (SINRs) higbwgh for successful data transmission. In
this case, a UE can be simultaneously served by multiple SB&8the SBS can cooperatively
transmit a signal to the UE [3]-[13].

In coordinated transmission schemes, higher diversity $h ddordination can be achieved
as the number of cooperative SBSs increases, and thus thegtput performance can be
significantly improved. For coordinated transmission, tdo®perative SBSs exchange channel
state information (CSI) or transmit messages through adweekbone. However, the increased
number of cooperative BSs introduces information exchamgghead among the BSs [3]-[6].
Therefore, it is critical to select an appropriate subseB8& to participate in coordinated
transmission, rather than all the BSs in a network.

In this paper, we consider a heterogeneous coordinatedntiiasion scenario, where there
exist hotspot areas with high demand for wireless servioesaflarge number of UEs while
the number of UEs rapidly decreases at the outside of hotsgats. In this case, coordinated
transmission schemes may fail to achieve adequate QoS dmetiael SBSs deployed in a hotspot
area are easily overloaded with a large number of UEs. Talaevice performance degradation,
we propose to use the level of SBS resource utilization asoparative SBS selection metric.
The resource utilization of an SBS is given by the ratio of thenber of currently occupied
subcarriers to the total number of subcarriers. As a BS gesvivireless service to more UES,

the resource utilization of the BS increases. If the utilmaof a BS is close to 1, the QoS for
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UEs in its service area declines, especially when the traffimands from UEs are bursty. If
there are nearby SBSs with a small number of UEs, it would &bt include them in the
set of cooperative SBSs even if they are not the closest ang®etUESs. This utilization-based
approach also leads to traffic load balancing among SBSs wtsptt scenario.

In a coordinated transmission, when interference from ooperative BSs—e.g., BSs in a
macrocell—is strong, a UE may not have a sufficient SINR faccessful communication.
Even when a set of SBSs is selected to guarantee a sufficitiiR &1 a UE, the SINR could
fall to unacceptable levels if the channel estimation iscaumate. Therefore it is of critical
importance to compensate for inaccurate channel estimati interference to ensure robust
service performance. To this end, we apply robust optinarai the coordinated transmission
that can give a robust solution even when there exists wingrtin parameter estimation.
Simulation results indicate that this robust approach edigpms the conventional methods that
use a static margin for SINR estimation.

The remainder of this paper is organized as follows. In $achi, we provide an overview
of related work. In Section Ill, we present the system modwe derive the SINR for each
UE when multiple SBSs cooperatively provide service to tame UE. Then, in Section IV,
we explain the proposed cooperative transmission meth@lalMb derive the upper bound of
outage probability. In Section V, we present our perfornearealuation, and our conclusion

follows in Section VI.

I[I. RELATED WORK

There are a large number of actively ongoing studies on coated transmission among BSs

for improving network service performance.

A. Coordinated Transmission Approach

Static topology-based coordinated transmission: The coordinated transmission among coop-
erating BSs increases the system complexity owing to thanmédtion exchange. To reduce the
complexity and to exploit the benefits of the coordinatechgraission, Marsch and Fettweis
focused on static topology-based coordinated transnmssig3]. They formulated an average
SINR maximization problem according to a predefined clysied presented that the appropriate
static clustering for a given network topology shows a nekambroughput performance close

to the user-centric clustering while requiring low contoekerhead. Huang and Andrews studied
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the SINR outage probability of UEs when the UEs are servigestatic clustered BSs [4]. They
assumed a Poisson distributed BS topology and clustere@88$exagonal lattice. The analytic
results showed that the outage probability largely dependfie average number of cooperating
BSs in each cluster, and presented that the number of cdopeBSs in each cluster is important

in static clustering. Katranarast al. studied a static topology-based coordinated transmission
in Long-Term Evolution (LTE) networks [7]. They analyzedetipower consumption for the
transmission, signal processing, and backhaul link cameof cooperating BSs in a variety of
static cluster sizes and deployment densities of coopgy&@5s. Through the simulation results,
they showed that an appropriate predefined cluster size sfcB® improve the energy efficiency
for a given BS density of a network.

User-centric clustering-based coordinated transmission: To enhance the throughput perfor-
mance of the UEs, extensive research has been carried outvotolrselect a proper set of BSs
for each UE while maintaining a certain SINR at the UEs. Zkaal. studied an overlapped
coordinated transmission in LTE-Advanced to order to detee an effective set of cooperating
BSs for each cell-edge user [8]. The proposed algorithm Jnc{8nputes the SINR gain of
each cell-edge user for every possible cluster, and seleetbest cluster that gives the highest
SINR gain to the user. Through simulation results, they stbthat user-centric clustering-based
coordinated transmission achieves better network thnouigperformance than static topology-
based coordinated transmission. Baraeical. considered the problem of dynamic joint clustering
and scheduling for BSs and UEs for downlink coordinateddmaigsion [9]. Based on SINR
values, UEs are grouped according to the preferred BS. Omdbes of the preferred BS set
for UEs, a greedy clustering selection algorithm that tieedy determines BS clusters at each
time slot was proposed to improve service performance bygatihg the interference among
BS clusters. In [10], Garci&t al. analyzed SINR outage probability caused by signals from
noncooperative BSs and proposed a clustering algorithbmbaimizes the normalized goodput.
They presented that the proposed user-centric clustetgayithm achieves higher normalized

goodput than static topology-based clustering.

B. Coordinated Transmission Strategy

Energy consumption minimization: There has been a line of research on energy consumption
reduction in BS coordinated transmission. Huang and Arstadied the influence of the number

of UEs served by multiple BSs on network performance, andqudhat the proper number of
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UEs associated with multiple BSs increases energy effigi¢ht]. They formulated a power
consumption minimization problem and proposed a joint spet and power allocation (JSPA)
algorithm that selects the cooperating BSs while restigctihe number of UEs associated
with multiple BSs. Haret al. investigated the benefits of coordinated transmission itticell
cooperative networks where underutilized BSs can go intdeapsmode to reduce energy
consumption [12]. They proposed a power and subcarriecailon algorithm that minimizes
network power consumption, retaining sufficient SINR foe thireless service. Het al. studied
distributed energy-efficient coordinated transmissidd].[They defined energy efficiency as the
ratio of the transmission rate sum to the total power congiompand formulated an energy
efficiency maximization problem as a fractional programgnproblem. They decomposed the
problem into a master problem and subproblems for each BSeombsed a power allocation
algorithm for solving the decomposed problem.

Network overhead minimization: The amount of information exchange among BSs has been
one of the key research issues because network overheadhoragse severely with the number
of cooperating BSs. In [5], Unachukvei al.investigated the impact of the number of cooperating
BSs per UE on power consumption and data overhead. They shbew the number of
cooperating BSs per UE influences network performance, aegbpted that a proper restriction
on cooperating BS set size improves energy efficiency. In ZBjao et al. focused on the
problem of minimizing user data transfer in the backhauleur@oS and BS power constraints.
They defined a routing matrix for distributing user data tomerating BSs and formulated a
routing matrix minimization problem as aijg-norm minimization problem. Becaudg-norm
minimization is NP-hard, the authors proposed two algorgtbased ord;-norm minimization
and [,-norm relaxation, and they showed that the algorithms cgnifstantly reduce user data

transfer in the backhaul.

C. Our Contribution

Our main contributions are summarized as follows:

« We consider resource utilization as a new performance enéidri user scheduling in the
optimization of coordinate transmission. In previous gagdconventional coordinated trans-
mission schemes allocated a set or cluster of coordinag@drnrission SBSs based on SINR
performance, energy efficiency, and control overhead. ®bist of our knowledge, this

paper is the first study that exploits resource utilizatiorovercome service performance
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degradation owing to overloaded SBSs in coordinated traassom scenarios, in which there
exist several hotspot areas with high service demand. Tooped coordinated transmission
can achieve a significant increase in the number of UEs sshy the network because
the SBSs with more available resources are cooperativelghied in the coordinated
transmission.

« In the case of incorrect channel estimation, we also demist resource allocation to
avoid violating the minimum SINR even in the worst case. Whenobtain the channel
state information for a coordinated transmission, the nbkhestimate can be inaccurate
owing to interference from noncooperative cells. In thisegaUEs may fail to have high
SINRs, which they are expected to obtain through coordiatasmission from cooperating
SBSs. In this paper, a robust optimization is consideredc@mrdinated transmission in
order to compensate for inaccurate channel estimates amditigate interference from
noncooperative cells.

« We exploit user-centric clustering-based coordinatedstrzission to achieve a high level of
coordination diversity and to enhance network throughphé cooperating SBSs are deter-
mined based on possible clustering sets for each UE. Weeddté/outage probability for a
user, and show that the proposed method provides robustftiridre service performance

even with inaccurate channel state information.

[1l. SYSTEM MODEL

We consider a wireless network where a setNofSBSs, denoted by, provides wireless
X|= N and|U| = L. As illustrated

in Fig. 1, some SBSs are located in heavily congested ardaswgh demand for UE services,

connectivity service to a set df UEs, denoted by/, i.e.,

while the others are in less congested areas. These hatemge characteristics of wireless
service capability and demand cause an unbalance of QoShanttide taken into consideration
in a coordinated transmission policy. SBSs simultaneopsbyide wireless connectivity service
for UEs by adopting orthogonal frequency division multiglecess (OFDMA) with a set of
subcarriers”'. A set of neighboring SBSs for a UE, denoted byX, C X, is defined as those
which can communicate with the UE If the size of X, is large, it is possible to exploit a high
level of coordination diversity with more SBSs, but this eggch incurs significant inter-SBS
interference if the SBSs are not properly coordinated. TB8sSshare transmission data and CSI

with each other, and SB&transmits a signain, ., with powerp; ., to UE k at a subcarriet.
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Fig. 1. System model for cooperative small cell networks.

Note that the SBSs are connected to each other through ash&gd wired backhaul network.
However, if the size ofX, is large, message exchange overhead may be significant. g\mon
SBSs inXj, several SBSs, denoted I# ,(t) C X, are selected to participate in joint signal
transmission to UE: at subcarrier at time slott. We define SBS resource utilizatief(t) for
the SBSi as the ratio of the currently occupied subcarriers to thal tmimber of subcarriers at
time slott. For example, SBS is fully utilized if all |C| subcarriers are occupied owing to a
high number of UEs, i.ey; = 1. If SBS is idle without UEs,u; = 0. In general, as illustrated
in Fig. 1, the utilizations of SBSs in the heavily congestegha are high, while those of SBSs
in the lightly congested areas are low, because the SBSseimtire congested areas receive
higher wireless service demands from more UEs. This imphas the SBSs in less congested
areas have more available resources to be allocated for esitJa coordinated transmission
scheme.
In Fig. 1, the received signal of UE at subcarrier: at time slott is given by
Rep(t) = D hic(8) /Do) + ne(t), 1)
i€X

whereh; . () is the channel gain from SB&to UE k at subcarrier, m; . x(t) is a transmitted

message from SB§ andn.x(t) is the additive white Gaussian noise (AWGN) with a variance
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of o2. From a UEk's perspective, there is a set of SBSE,, which can communicate with
UE £ while the other SBSs in a network are only interferers. Thesdignal term in (1) can
be decomposed into two components, which are the signats fre SBSs that are jointly
cooperating for the wireless service to WEand the interference from the other SBSs. Then the
SINR can be easily derived as done in the literature [9],.[10]

In this paper, we decomposge. ;(¢) into three components as follows:

Rc,k (t> = Z hi,c,k (t)\/ pi,c,kmi,c,k<t) + Z hi,c,k(t)\/ Dic, ki ck (t>

iGSC’k(t) ieXk\sc,k(t)
+ Z hi,c,k:(t)\/ pi,c,k:mi,c,k(t) + nc,k(t)' (2)
’iEX\Xk

Note that the above equation is equivalent to that in (1) b = S, () U (X \ Scx(t)) U

(X \ X%). Under the proposed coordinated transmission scheme,B&s 8 (X \ S.x) are

controlled using precoding matrices so as to not interfath WE & when the SBSs irb, , are

transmitting to UEL. Therefore SINR. x of UE k is obtained by using (2) as
Zz‘esc,k(t) | e e () D

ZjeX\Xk ek (E) *Djc + 02

= D Giealt), (4)
i€Se 1 (t)
where g; . k(t) = [Pick()*Pick/ (O ex\x, ek (O PDjen + o) if the power of m; . .(t) is
assumed to be 1. Note that the denominator of (3) does natdadhe interference from the
SBSs in(X} \ S.x). Because the SINR of UE in (3) depends on the signal strengths from

SINR, = 3)

Sek(t), selecting a subset of appropriate SBSs;(t) from X, is crucial for the throughput

performance.

V. RoBUST COORDINATED TRANSMISSION
A. Coordinated Transmission

We consider a coordinated transmission that enables rfeuBips to cooperate with each other
in order to improve the throughput performance of UEs. If aof&ooperating BSsY;. provides
wireless connectivity service to UEby making use of spatial diversity, the performance would
be improved compared to the case where only one of the neigighBSs provides service to
UE k. However, message exchange overhead exists if the si2g, o large because BSs in

X, must share transmission data and CSI. Instead of using tiive eet of BSs, a subset of
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X}, needs to be selected to participate in joint signal transionisto UE .. For the selection of
Sck(t), one may consider to minimize the total transmit power of BSS,(¢) under the SINR

requirement constraints as follows:

minimize Z Z Dic
Se k) ceC €S, k(t)

(5)

subjectto Y giex(t) =7 for VeeC.

iesc,k (t)

For simplicity, the aforementioned optimization is decars@d for each subcarrier as follows:

MIN-POWER method
minimize ) p;

Sk(t) €Sk (t) ®)
subjectto Y g;x(t) > 7.
1€SK(t)

Note that as addressed in Section Il, there exist severabapipes [11], [12] that have used an
optimization strategy similar to (6), and JSPA [11] will beakiated for comparison purposes
in Section V. However, because SBSs are usually powered [@featrical outlet, what is more
important than power consumption in the selection of an SBthe impact on the QoS of UEs
served by an SBS when the SBS is newly selected to providéceety another UE.

We propose a new criterion for SBS selection, which is tocdedesubset of SBSs with low
resource utilization for joint signal transmission to WEat subcarrier. Determining a subset
of cooperative SBSs without considering their utilizatimay lead to a degradation of service
capability. An SBS with low utilization can accept more seevrequests from UEs without
degrading the QoS of ongoing services. On the other handiefveSBSs that are close to UEs
are selected in a hotspot area, the SBSs are easily ovedlcautd the QoS provided by the SBSs
eventually degrades. Instead of high-utilization SBSis, dtesirable to select low-utilization SBSs
to improve the throughput performance of WHdy cooperatively providing service to the UE.
We determineS;(¢) that minimizes the sum of utilization;(¢), i € Si(¢) while satisfying the
SINR threshold requirement. The selection problem is foated as follows:

MIN-UTIL method
minimize w;(t
Sk (1) Z ( )
€Sk (t)

subjectto Y gix(t) =7
1€SK (t)

(7)

IHereafter, we omit the subscriptfor notational simplicity.
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10

UE k is served at time slat by the SBSs inS,(¢) obtained from (7).

We further extend the MIN-UTIL optimization in (7) to robusiptimization in order to
compensate for uncertainty in parameter estimation. Ing%)is a parameter to be estimated,
and it is susceptible to interference from noncooperatB&sS(i.e., X \ X;) for UE k. If the
SINR constraint is not satisfied owing to estimation undetyathe joint transmission by the
selected SBSs is unnecessarily wasted becausé dées not have an SINR high enough for
successful communication. Whilg ,(¢) is a nominal value to be estimated and used in the
optimization, the actual value of the uncertain paramétg(z), j € Si(t) is assumed to be in
the range ofig; 1. (t) — Gi x(t), gix(t) + Gi x(¢)] [14]. The robust optimization for (7) is formulated
as follows:

ROBUST-MIN-UTIL method

minimize Z w;(t)

Sk(t) €Sk (t)

subjectto Y g;x(t) — B, (1) > 7.
i€Sk(t)

(8)

where B, 1y (I') = maxgajacs, @), a=r}{>_ica Jix(t)}. In (8), the robustness of the system is
adjusted by an integer parametér 0 < I" < |Sk(¢)|. This implies that the robust solution
obtained by (8) does not violate the SINR constraint if thenhar of g; .(t)’s that have a
significant discrepancy relative to the corresponding mainralues does not exce€dTherefore
the SBSs obtained from (8) provide more robust service tdJighan those obtained from (7)

when an uncertainty in parameter estimation exists, wischlways the case in practice.

B. Algorithm for a Binary Selection Problem

The optimization of (8) is a binary selection problem thahimizes the aggregate utilization
of the selected SBSs while satisfying the SINR constraird. filét transform the minimization
problem to an equivalent maximization form as follows:

i |
axjmize > w)
1€ Z,=(X1\Sk (1))

subject to Z gix(t) < Z 9ik(t) =7 = Bsuny (1)

i€Zy, 1€ Xy

9)

Note that the maximization of the aggregate utilization &SS in 7, is equivalent to the

minimization of the aggregate utilization of SBSs$(¢). One may solve this binary integer
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11

Algorithm 1 Algorlthm for solving a binary selection problem

1: /I ForVi, i € {0,--- ,z} wherex is the number of SBSs.
2: Il ForVgy, g;. € {0,--- ,y} wherey is the maximum bound of normalized SINR sum.
3: I g is the normalized SINR value from SBSo UE k.

4: /I u;(t) is the utilization value of SBS.

5:

6: SetV (i,0) = 0 for Vi, and setV (0, g;,) = 0 for Vg, .

7. Forv(i, g;,), calculateV (i, g;.) as follows:

8: if g; , > gj, then

9 V(igr) =V(i—-1g)

10: else

11 V(i,g;,) = max{V(i — 1,g;), V(i — 1,95 — g; ;) + wi(t)}
12: end if

13:

14: Leti =z, andg), = v.
15: whilei > 0 andg;, > 0 do
16:  if V(i,g;) # V(i—1,g;,) then

17: mark thei?” SBS

18: G =0k —Gip i=1i—1
19: dse

20: t=1—1

21:  end if

22: end while

programming problem using a brute-force search, but itsptexity is given byO(2|Xk|), which
is too expensive to be solved in practice.

Owing to the high complexity of (9), we solve the problem irotsteps and obtain a suboptimal
solution. In the first step, we select a set of SBSs by setting,(I') = 0, which corresponds to
the solutions of the MIN-UTIL method in (7). In the secondpstenore SBSs are selected from
the set of SBSs that are not selected in the first step in oodeornpensate for the uncertainty
in parameter estimation. Note that, ) (I") is approximated as a constant, which is obtained
using the solution obtained in the first step.

In each step, we use dynamic programming in order to find diealfor the binary selection

problem [15]-[17]. Algorithm 1 shows the procedure of thenawic programming used for
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12

TABLE |
A TABLE FOR SOLVING THE BINARY SELECTION PROBLEM USING DYNAMC PROGRAMMING.

9%=0 | gr=1] g.=2 9=y
i=0 | V(0,0) | V(0,1) | V(0,2) V(0,y)
i=11]V(1,0) | V(1,1) | V(1,2) V(1,y)
i=2 ] V(2,0 | V(2,1) | V(2,2) V(2,y)
i=xz | V(z,0) | V(z,1) | V(z,2) Viz,y)

solving (9). The algorithm is based on the tabulation of maxn values of the aggregate
utilization. Table | shows the table of a paramétdi, g;.), which represents the maximum value
of the aggregate utilization that can be attained using SBES® i under the constraint that the
summation of SINR is less than or equalgo In this algorithm,g; () must be normalized for
the tabulation in Table | such that the normalized versgipnof g;, has a certain large integer
value, which corresponds to the width of the table. Thayjs, = [gi(t)/(€gx, 1.k (t)/[Xx])]
andy’ = |v/(egx,x(t)/|Xx|)| for e > 0. Here,e is set to 0.1. Note that the SBSs are assumed
to be sorted in ascending order @f;(¢).

Let S; and S} be the solution for the first and second step, respectilys obtained using
Algorithm 1 withz = | X,| andy = >, «, g;, —7'- In Algorithm 1, the table for the parameter
V (i, g;) is initialized in line 6. In lines 7 to 12, each elemént:, g, ) of the table is recursively

calculated as follows:

V(i—1,g,), if g, > gp,

Vi, g,) = (10)

max{V (i —1,9;), V(i — 1,9, — gi;) + ui(t)}, otherwise.
Using the table fol//(i, g;.) as shown in Table I, the algorithm starts to inspect each eém
of the table starting from the bottom right corner of the ¢alaind if the condition in line 16 is
satisfied, it sets the corresponding SBS as marked. Theitalgostops when all the rows are
inspected, as described in lines 15 to 22. Eventually, th&kedaSBSs are selected as the SBSs
that maximize) _,_, u;(t), and Sy = (Xi \ Zy).

Once S, is obtained,S; can be obtained by choosing SBSs fréfpnin order to compensate
for the uncertainty in parameter estimation. In (89, (I') is a function ofSy(¢) but is assumed
to be a constant given hys ) (I'). Then.Sy can be obtained simply by repeating Algorithm 1
with z = |Zy[ andy = >, , g, — B'. Note that the SBSs i}, are sorted in ascending order
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of gu(t). i = Loin(t)/(cgizu(®)/1Zel)] and §' = [Bs,(T)/(egiz (1)1 Z4])] for e > 0.
Finally, the SBSs in(S,. U S}) are intended to cooperatively provide service to kIE

The complexity of Algorithm 1 depends on the table size ferltimary selection problem [16].
As the width and height of Table I are= (|X,|+1) andd = (3., 9;x—7'+1), respectively,
the complexity is given by) (r6), which is much lower tha® (21¥/) for the brute-force search.

C. Outage Probability

In this section, we calculate the upper bound of the outagbatility for the ROBUST-MIN-
UTIL method.

Theorem 1. Let S;(t) and A* be an optimal solution of (8) and the corresponding set that

achieves the maximum fgis- ) ('), respectively. Then the outage probability satisfies tie fo

Pr(ie%gi,k(t) <b) < 1—@(3%0 (11)

where ®(0) = ﬁff@ exp(—%)dy and is the cumulative distribution function of a standard
normal distribution.

lowing inequality:

Proof. See the appendix. O

The outage probability is calculated under the conditicat & feasible solution exists. Note
that there is no feasible solution if the SINR is lower thafor Si(t) = Xj.

V. PERFORMANCE EVALUATION

In this section, we present the results of a simulation aesigto evaluate the performance
of the ROBUST-MIN-UTIL method in comparison with that of th&N-POWER method, the
MIN-UTIL method, and the JSPA algorithm in [11]. The simudet has been carried out using
MATLAB. In this simulation, N SBSs andL UEs are randomly distributed in a square area.
Each SBS is assumed to simultaneously service UpOtJEs in accordance with its capacity
limitation. For a UEE, if an SBS’s distance from the UE is less than 1 km, it is inelld
in X,. The signals from the SBSs are transmitted at a 2.6-GHz cémguency through an
AWGN channel with a power of 0.01 W, and the path loss exporgeset to 3. As described in
Section 1V, the channel estimation is susceptible to uag&st, which is modeled as a normal
distribution. For the simulation of the MIN-POWER method(8) and the MIN-UTIL method
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—— Upper bound in (il)
ROBUST-MIN-UTIL (y = 20)
-----@---- ROBUST-MIN-UTIL (y = 12.5)

0.8

0.6

0.4 \\

Outage probability

0.2

Fig. 2. Outage probability comparison fbr (| X| = 45, | X%| = 30, L = 80).

in (7), a certain amount of SINR margin that is proportiomadt(i.e., o) is added to the SINR
constraints. Without the SINR margin, the optimizationkibit high outage probability because
of the channel estimation uncertainty. Note that, (") in (8) can be considered as a margin
that is given as a function of, andI’, while the margin in (6) and (7) is simply proportional
to the SINR threshold.

Fig. 2 shows the analytic upper bound in (11) and the simaratesults for the outage
probability. Note that the outage probability for = 0 in the figure corresponds to that for
the MIN-UTIL method. We observe that the outage probabsitof the ROBUST-MIN-UTIL
method do not exceed the analytic upper bound in (11). In therdi the outage probability
of the ROBUST-MIN-UTIL method decreases Hsincreases because more SBSs are selected
with a largerI. In the entire range of, the outage probability fory = 20 is greater than that
for v = 12.5 because as becomes higher, more SBSs must be selected to satisfy thie SIN
constraint.

Fig. 3(a) and 3(b) show the normalized number of UEs in servitben there are 80 and
120 UEs, respectively. In the simulation, the ROBUST-MINHU method calculates the SINR
margin with regard taS, andI' according tofs, ) (I") = maxgajacs,@),jal=r}{>_ica Gik(t)},
while the MIN-POWER and MIN-UTIL methods determine the SINWargin proportionally

to v. The simulation results in Fig. 3(a) show that, when= 0.02, the performance of the
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JSPAin [11]

—e— MIN-POWER 8 = o.ozg
----@---- MIN-POWER ( = 0.12
MIN-UTIL (a = 0.02
MIN-UTIL Ecx = 0.123
—>— ROBUST-MIN-UTIL'(" = 1)
6 8 10 12 18 20
y [dB]

(a) Normalized number of UEs in service whén= 80

JSPA in [11]

—e— MIN-POWER (@ = 0.02
----@---- MIN-POWER 8 = 0-123
MIN-UTIL (a = 0.02
MIN-UTIL (a = 0.123
—>%— ROBUST-MIN-UTIL (T = 1)
6 8 10 12 18 20
y[dB]

(b) Normalized number of UEs in service whén= 120

ROBUST-MIN-UTIL method is always better than that of the etimethods because the small
SINR margins of the MIN-POWER and MIN-UTIL methods cause ghhoutage probability.
Note that the JSPA method in [11] does not consider the SINRyjimdor protection against

channel estimation uncertainty. Wherr 0.12, the performance of the MIN-POWER method is
still lower than that of the ROBUST-MIN-UTIL method. Everdlligh the SINR margin increases
and each UE experiences low outage performance, SBSs ¢heloae to UEs can easily become
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overloaded because they service excessive UEs. On thehathdy the performance of the MIN-
UTIL method witha = 0.12 increases as increases untity = 17, and the MIN-UTIL method
shows better performance than the ROBUST-MIN-UTIL methdeey > 17.

Since both the ROBUST-MIN-UTIL method and the MIN-UTIL meth make use of low-
utilization SBSs to avoid QoS degradation of ongoing sewicaused by overloaded SBSs, the
performance is highly dependent on the amount of SINR makdémce, whergg, ) (I') of the
ROBUST-MIN-UTIL method is smaller than the SINR margiy of the MIN-UTIL method, the
performance of the ROBUST-MIN-UTIL method is lower thanttiod the MIN-UTIL method.
However, the performance of the MIN-UTIL method also evefiyjudecreases, as shown in the
simulation results, whern > 17. This is because excessive SBSs are selected to maihéin t
outage performance of UEs. As a result, the total number of ldEervice decreases. Moreover,
when~y > 17, the MIN-UTIL method consumes many more resources tharRBBUST-MIN-
UTIL method. The usage of resources is depicted in Fig. 4.

Fig. 3(b) shows the simulation results when the number of ¥E$20. In this case, the
performance comparison between the ROBUST-MIN-UTIL mdthad the MIN-UTIL method
is similar to the results in Fig. 3(a), except that the perfance of both methods decreases more
quickly as~ increases. However, unlike the simulation results in F{@),3both the ROBUST-
MIN-UTIL method and the MIN-UTIL method always show bettegrfpormance than the MIN-
POWER method. The MIN-POWER method selects SBSs that ase ¢ UEs even if they
are highly utilized. Hence, as the number of UEs increasB§sShat are close to UEs are
repeatedly selected and become overloaded, causing @égrad the QoS. On the other hand,
the ROBUST-MIN-UTIL method and the MIN-UTIL method make usfelow-utilization SBSs,
since they select SBSs in a way that minimizes the utilizatiom of selected SBSs. Therefore
the ROBUST-MIN-UTIL method and the MIN-UTIL method show teetperformance than the
MIN-POWER method, especially in a hotspot area with many .UEs

Fig. 4 shows the average transmit power and utilization d&#r the simulation in Fig. 3(a).
Note that the SINR margins for both the MIN-POWER and the MUWNH. methods increase as
« increases because the SINR margin is calculatedhas-ig. 4(a) shows that when = 0.02,
both the MIN-POWER method and the MIN-UTIL method requirgvés transmit power than
the ROBUST-MIN-UTIL method. In these cases, the outage qivdity of the MIN-POWER
method and the MIN-UTIL method is higher than that of the RCGHWMIN-UTIL method since

the SINR margin is too small to compensate for the channghatbn uncertainty. Therefore the
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(a) Average transmit power requirement per UE
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MIN-UTIL (a = 0.02
MIN-UTIL (a = 0.12
0.8 * —¢— ROBUST-MIN-UTIL (T = 1)
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(b) Average utilization of SBSs

Fig. 4. Average transmit power and utilization of SB$X | = 45, | X | = 30, L = 80).

MIN-POWER and MIN-UTIL methods service fewer UEs, as showfig. 3(a). Whemy = 0.12,
there are points at which the MIN-POWER and MIN-UTIL meth@d®sume more power than
the ROBUST-MIN-UTIL method because the SINR margin becomes larger thaf, (") in
the ROBUST-MIN-UTIL method. Whei = 0.12 andy = 20, however, even though the MIN-
POWER method consumes more power than the ROBUST-MIN-UTéthod, the performance
of the ROBUST-MIN-UTIL method is better than that of the MOWER method. On the other
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hand, the MIN-UTIL method shows better performance thanRE®BUST-MIN-UTIL method
whena = 0.12 andy > 17.

However, the MIN-UTIL method requires much more power thae ROBUST-MIN-UTIL
method, as shown at = 20. Furthermore, when = 14, although the ROBUST-MIN-UTIL and
MIN-UTIL methods consume similar average transmit powee, ROBUST-MIN-UTIL method
services more UEs than the MIN-UTIL method. This is becadsspite the fact that the two
methods have the same SINR threshold, the number of reqBB&s changes from time to time
owing to the difference in interference from noncoopemt8BSs. Hence, deriving the SINR
margin from the selected SBSs is better than a static cdilenlaf the SINR margin with regard
to v. Note that the JSPA method in [11] limits the number of UE4 Hra served by multiple
SBSs in order to reduce the power consumption. As a reselt)J8PA method consumes much
less power than the other methods, but it provides wirelesgce to a smaller number of UEs
than the other methods.

Fig. 4(b) shows the average utilization of SBSs that arecsadeto serve UEs. When the SINR
margin is small, the MIN-UTIL method shows lower utilizatidghan the ROBUST-MIN-UTIL
method. When the SINR margin is large, there are certaintp@nwhich the ROBUST-MIN-
UTIL method shows lower utilization than the MIN-UTIL metthoOn the other hand, according
to the simulation results, the MIN-POWER method always shbigher utilization than both the
ROBUST-MIN-UTIL method and the MIN-UTIL method. This is bemese the ROBUST-MIN-
UTIL and MIN-UTIL methods select low-utilization SBSs iesid of high-utilization SBSs,
while the MIN-POWER method selects SBSs that are close to &VEs if their utilizations are
high. Therefore the ROBUST-MIN-UTIL method and the MIN-WTmethod can avoid QoS
degradation of ongoing services more effectively than th&\dAIOWER method. The JSPA
method shows constantly low utilization because the nurob&lEs that are served by multiple
SBSs is limited in the JSPA method.

Fig. 5 shows the Jain’s fairness index for the utilizationSB8Ss. The result of the Jain’s
fairness index ranges froy| X} | to 1, and the 1 means that the utilizations of all SBSs are the
same. The results indicate that the ROBUST-MIN-UTIL method the MIN-UTIL method are
better than the MIN-POWER method and the JSPA method in tefrfarness. This means that
a few SBSs are excessively selected when the MIN-POWER meththe JSPA method is used,
even though there are other SBSs with low utilization. Ondtieer hand, the ROBUST-MIN-
UTIL method and the MIN-UTIL method select low-utilizati®@BSs instead of high-utilization
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Fig. 5. Jain’s fairness index comparison of the meth@as| = 45, | Xx| = 30, L = 80).

SBSs. Therefore, the ROBUST-MIN-UTIL method and the MIN{UTmethod can avoid QoS
degradation caused by SBSs with high utilization.

VI. CONCLUSION

In this paper, we have proposed a robust optimization-b&&l selection method in which
low-utilization SBSs are selected to cooperatively prewérvice to UEs while compensating for
uncertainty in parameter estimation. The proposed mettiethats to minimize the utilization of
neighboring SBSs and avoids service performance degoadzdiused by overloaded SBSs. It also
compensates for the uncertainty in parameter estimatiombust coordination transmission with
low outage probability. We have derived the upper bound tdgel probability and compared the
upper bound with simulation results. The simulation resuiticated that the proposed method

achieves robust and efficient service performance in a demsdl cell network.
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APPENDIX A

PROOF OFTHEOREM 1

We definen; . (t) = (9ix(t) — gix(t))/gix(t) andn;x(t) € [-1,1].

P 3 g <r) =2 ( w0+ X il <o)

i€Sk (1) i€Sk (1) i€Sk (1)

( Gik(t Z i (1) i (1) < Z gi,k(t)m(t)—ﬁsk(t)(r)>
ieS(t) i€ Sy (t) ieS(t)

( S a0)dialt) < —Zgi,ku))
1€SE(t) i€ A*

( 3 m,k@)@,k(w<—Z<1—m,k<t>>ga*,k<t>)
ieS;(t)\A* i€ A*

rr( > 0 < S naw 1)
i€ Sy (t)\A* g“ ok ieA*
(r< > vl ) (12)
ZES*
where
1, ifie A,
Vik =

Gkl if e S\ A,

Ga* K

anda = arg,. , min g, ,(¢). By using the theorem in [14], the probability in (12) is lekan or
-1

VXl

equal tol — <I><
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