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Cooperative Small Cell Networks
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Abstract

Within a macrocell with a large coverage area, multiple small cells are deployed such that each small

cell base station (SBS) supports wireless service demands from user equipments (UEs). Each UE can

be simultaneously served by multiple SBSs for quality of service (QoS) enhancement. When there exist

hotspot areas with a number of UEs, the SBSs near the hotspot areas may experience a higher resource

utilization level than those outside of the hotspot areas, resulting in a shortage of available resources.

We propose a robust resource-utilization-based coordinated transmission for heterogeneous networks

with a locally different level of traffic demands. In the utilization-based coordinated transmission, low-

utilization SBSs with a small number of UEs are selected to serve a newly joining UE because they

have more capacity to serve requests with bursty traffic demand. We further formulate the selection of

cooperative SBSs as a robust optimization problem in order to ensure that UEs have sufficiently high

signal-to-interference-plus-noise ratios (SINRs), evenwith channel estimation inaccuracy and strong

interference from noncooperative SBSs. The simulation results indicate that the proposed method guar-

antees robust and efficient service performance in heterogeneous small cell networks.
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I. INTRODUCTION

In a macrocell with a large coverage area, it will be difficultfor a single macrocell base

station (MBS) to satisfy high traffic demand and quality of service (QoS) requirements for user

equipments (UEs) when the MBS becomes overloaded with excessive service requests from

UEs. In order to prevent a single MBS from being overwhelmed with service requests, multiple

base stations (BSs) with low transmit power can be deployed within a macrocell [1], [2]. In

general, this heterogeneous network consists of a single macrocell and multiple small cells, and

the BS in each small cell is intended to provide wireless service in certain small areas with

high traffic demand, such as a hotspot area. Because the traffic load is distributed over multiple

BSs, a heterogeneous network can achieve better network performance than a single macrocell.

However, because each small cell base station (SBS) usuallyuses a low transmit power to avoid

interfering with UEs associated with an MBS, the UEs served by the single SBS may not have

signal-to-interference-plus-noise ratios (SINRs) high enough for successful data transmission. In

this case, a UE can be simultaneously served by multiple SBSs, and the SBS can cooperatively

transmit a signal to the UE [3]–[13].

In coordinated transmission schemes, higher diversity in BS coordination can be achieved

as the number of cooperative SBSs increases, and thus the throughput performance can be

significantly improved. For coordinated transmission, thecooperative SBSs exchange channel

state information (CSI) or transmit messages through a wired backbone. However, the increased

number of cooperative BSs introduces information exchangeoverhead among the BSs [3]–[6].

Therefore, it is critical to select an appropriate subset ofBSs to participate in coordinated

transmission, rather than all the BSs in a network.

In this paper, we consider a heterogeneous coordinated transmission scenario, where there

exist hotspot areas with high demand for wireless services for a large number of UEs while

the number of UEs rapidly decreases at the outside of hotspotareas. In this case, coordinated

transmission schemes may fail to achieve adequate QoS because the SBSs deployed in a hotspot

area are easily overloaded with a large number of UEs. To avoid service performance degradation,

we propose to use the level of SBS resource utilization as a cooperative SBS selection metric.

The resource utilization of an SBS is given by the ratio of thenumber of currently occupied

subcarriers to the total number of subcarriers. As a BS provides wireless service to more UEs,

the resource utilization of the BS increases. If the utilization of a BS is close to 1, the QoS for
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UEs in its service area declines, especially when the trafficdemands from UEs are bursty. If

there are nearby SBSs with a small number of UEs, it would be better to include them in the

set of cooperative SBSs even if they are not the closest ones to the UEs. This utilization-based

approach also leads to traffic load balancing among SBSs in a hotspot scenario.

In a coordinated transmission, when interference from noncooperative BSs—e.g., BSs in a

macrocell—is strong, a UE may not have a sufficient SINR for successful communication.

Even when a set of SBSs is selected to guarantee a sufficient SINR at a UE, the SINR could

fall to unacceptable levels if the channel estimation is inaccurate. Therefore it is of critical

importance to compensate for inaccurate channel estimation and interference to ensure robust

service performance. To this end, we apply robust optimization to the coordinated transmission

that can give a robust solution even when there exists uncertainty in parameter estimation.

Simulation results indicate that this robust approach outperforms the conventional methods that

use a static margin for SINR estimation.

The remainder of this paper is organized as follows. In Section II, we provide an overview

of related work. In Section III, we present the system model and derive the SINR for each

UE when multiple SBSs cooperatively provide service to the same UE. Then, in Section IV,

we explain the proposed cooperative transmission method. We also derive the upper bound of

outage probability. In Section V, we present our performance evaluation, and our conclusion

follows in Section VI.

II. RELATED WORK

There are a large number of actively ongoing studies on coordinated transmission among BSs

for improving network service performance.

A. Coordinated Transmission Approach

Static topology-based coordinated transmission: The coordinated transmission among coop-

erating BSs increases the system complexity owing to the information exchange. To reduce the

complexity and to exploit the benefits of the coordinated transmission, Marsch and Fettweis

focused on static topology-based coordinated transmission in [3]. They formulated an average

SINR maximization problem according to a predefined cluster, and presented that the appropriate

static clustering for a given network topology shows a network throughput performance close

to the user-centric clustering while requiring low controloverhead. Huang and Andrews studied
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the SINR outage probability of UEs when the UEs are serviced by static clustered BSs [4]. They

assumed a Poisson distributed BS topology and clustered BSsas a hexagonal lattice. The analytic

results showed that the outage probability largely dependson the average number of cooperating

BSs in each cluster, and presented that the number of cooperating BSs in each cluster is important

in static clustering. Katranaraset al. studied a static topology-based coordinated transmission

in Long-Term Evolution (LTE) networks [7]. They analyzed the power consumption for the

transmission, signal processing, and backhaul link connection of cooperating BSs in a variety of

static cluster sizes and deployment densities of cooperating BSs. Through the simulation results,

they showed that an appropriate predefined cluster size of BSs can improve the energy efficiency

for a given BS density of a network.

User-centric clustering-based coordinated transmission: To enhance the throughput perfor-

mance of the UEs, extensive research has been carried out on how to select a proper set of BSs

for each UE while maintaining a certain SINR at the UEs. Zhaoet al. studied an overlapped

coordinated transmission in LTE-Advanced to order to determine an effective set of cooperating

BSs for each cell-edge user [8]. The proposed algorithm in [8] computes the SINR gain of

each cell-edge user for every possible cluster, and selectsthe best cluster that gives the highest

SINR gain to the user. Through simulation results, they showed that user-centric clustering-based

coordinated transmission achieves better network throughput performance than static topology-

based coordinated transmission. Baraccaet al.considered the problem of dynamic joint clustering

and scheduling for BSs and UEs for downlink coordinated transmission [9]. Based on SINR

values, UEs are grouped according to the preferred BS. On thebasis of the preferred BS set

for UEs, a greedy clustering selection algorithm that iteratively determines BS clusters at each

time slot was proposed to improve service performance by mitigating the interference among

BS clusters. In [10], Garciaet al. analyzed SINR outage probability caused by signals from

noncooperative BSs and proposed a clustering algorithm that maximizes the normalized goodput.

They presented that the proposed user-centric clustering algorithm achieves higher normalized

goodput than static topology-based clustering.

B. Coordinated Transmission Strategy

Energy consumption minimization: There has been a line of research on energy consumption

reduction in BS coordinated transmission. Huang and Ansaristudied the influence of the number

of UEs served by multiple BSs on network performance, and proved that the proper number of
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UEs associated with multiple BSs increases energy efficiency [11]. They formulated a power

consumption minimization problem and proposed a joint spectrum and power allocation (JSPA)

algorithm that selects the cooperating BSs while restricting the number of UEs associated

with multiple BSs. Hanet al. investigated the benefits of coordinated transmission in multicell

cooperative networks where underutilized BSs can go into a sleep mode to reduce energy

consumption [12]. They proposed a power and subcarrier allocation algorithm that minimizes

network power consumption, retaining sufficient SINR for the wireless service. Heet al. studied

distributed energy-efficient coordinated transmission [13]. They defined energy efficiency as the

ratio of the transmission rate sum to the total power consumption, and formulated an energy

efficiency maximization problem as a fractional programming problem. They decomposed the

problem into a master problem and subproblems for each BS andproposed a power allocation

algorithm for solving the decomposed problem.

Network overhead minimization: The amount of information exchange among BSs has been

one of the key research issues because network overhead may increase severely with the number

of cooperating BSs. In [5], Unachukwuet al. investigated the impact of the number of cooperating

BSs per UE on power consumption and data overhead. They showed how the number of

cooperating BSs per UE influences network performance, and presented that a proper restriction

on cooperating BS set size improves energy efficiency. In [6], Zhao et al. focused on the

problem of minimizing user data transfer in the backhaul under QoS and BS power constraints.

They defined a routing matrix for distributing user data to cooperating BSs and formulated a

routing matrix minimization problem as anl0-norm minimization problem. Becausel0-norm

minimization is NP-hard, the authors proposed two algorithms based onl1-norm minimization

and l2-norm relaxation, and they showed that the algorithms can significantly reduce user data

transfer in the backhaul.

C. Our Contribution

Our main contributions are summarized as follows:

• We consider resource utilization as a new performance metric for user scheduling in the

optimization of coordinate transmission. In previous studies, conventional coordinated trans-

mission schemes allocated a set or cluster of coordinated transmission SBSs based on SINR

performance, energy efficiency, and control overhead. To the best of our knowledge, this

paper is the first study that exploits resource utilization to overcome service performance
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degradation owing to overloaded SBSs in coordinated transmission scenarios, in which there

exist several hotspot areas with high service demand. The proposed coordinated transmission

can achieve a significant increase in the number of UEs serviced by the network because

the SBSs with more available resources are cooperatively involved in the coordinated

transmission.

• In the case of incorrect channel estimation, we also derive robust resource allocation to

avoid violating the minimum SINR even in the worst case. Whenwe obtain the channel

state information for a coordinated transmission, the channel estimate can be inaccurate

owing to interference from noncooperative cells. In this case, UEs may fail to have high

SINRs, which they are expected to obtain through coordinated transmission from cooperating

SBSs. In this paper, a robust optimization is considered forcoordinated transmission in

order to compensate for inaccurate channel estimates and tomitigate interference from

noncooperative cells.

• We exploit user-centric clustering-based coordinated transmission to achieve a high level of

coordination diversity and to enhance network throughput.The cooperating SBSs are deter-

mined based on possible clustering sets for each UE. We derive the outage probability for a

user, and show that the proposed method provides robust and efficient service performance

even with inaccurate channel state information.

III. SYSTEM MODEL

We consider a wireless network where a set ofN SBSs, denoted byX, provides wireless

connectivity service to a set ofL UEs, denoted byU , i.e., |X| = N and |U | = L. As illustrated

in Fig. 1, some SBSs are located in heavily congested areas with high demand for UE services,

while the others are in less congested areas. These heterogeneous characteristics of wireless

service capability and demand cause an unbalance of QoS and should be taken into consideration

in a coordinated transmission policy. SBSs simultaneouslyprovide wireless connectivity service

for UEs by adopting orthogonal frequency division multipleaccess (OFDMA) with a set of

subcarriersC. A set of neighboring SBSs for a UEk, denoted byXk ⊆ X, is defined as those

which can communicate with the UEk. If the size ofXk is large, it is possible to exploit a high

level of coordination diversity with more SBSs, but this approach incurs significant inter-SBS

interference if the SBSs are not properly coordinated. The SBSs share transmission data and CSI

with each other, and SBSi transmits a signalmi,c,k with powerpi,c,k to UE k at a subcarrierc.
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Fig. 1. System model for cooperative small cell networks.

Note that the SBSs are connected to each other through a high-speed wired backhaul network.

However, if the size ofXk is large, message exchange overhead may be significant. Among

SBSs inXk, several SBSs, denoted bySc,k(t) ⊆ Xk, are selected to participate in joint signal

transmission to UEk at subcarrierc at time slott. We define SBS resource utilizationui(t) for

the SBSi as the ratio of the currently occupied subcarriers to the total number of subcarriers at

time slot t. For example, SBSi is fully utilized if all |C| subcarriers are occupied owing to a

high number of UEs, i.e.,ui = 1. If SBS i is idle without UEs,ui = 0. In general, as illustrated

in Fig. 1, the utilizations of SBSs in the heavily congested areas are high, while those of SBSs

in the lightly congested areas are low, because the SBSs in the more congested areas receive

higher wireless service demands from more UEs. This impliesthat the SBSs in less congested

areas have more available resources to be allocated for new UEs in a coordinated transmission

scheme.

In Fig. 1, the received signal of UEk at subcarrierc at time slott is given by

Rc,k(t) =
∑

i∈X
hi,c,k(t)

√
pi,c,kmi,c,k(t) + nc,k(t), (1)

wherehi,c,k(t) is the channel gain from SBSi to UE k at subcarrierc, mi,c,k(t) is a transmitted

message from SBSi, andnc,k(t) is the additive white Gaussian noise (AWGN) with a variance
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of σ2. From a UEk’s perspective, there is a set of SBSs,Xk, which can communicate with

UE k while the other SBSs in a network are only interferers. Thus the signal term in (1) can

be decomposed into two components, which are the signals from the SBSs that are jointly

cooperating for the wireless service to UEk and the interference from the other SBSs. Then the

SINR can be easily derived as done in the literature [9], [10].

In this paper, we decomposeRc,k(t) into three components as follows:

Rc,k(t) =
∑

i∈Sc,k(t)

hi,c,k(t)
√
pi,c,kmi,c,k(t) +

∑

i∈Xk\Sc,k(t)

hi,c,k(t)
√
pi,c,kmi,c,k(t)

+
∑

i∈X\Xk

hi,c,k(t)
√
pi,c,kmi,c,k(t) + nc,k(t). (2)

Note that the above equation is equivalent to that in (1) becauseX = Sc,k(t) ∪ (Xk \ Sc,k(t)) ∪
(X \ Xk). Under the proposed coordinated transmission scheme, the SBSs in (Xk \ Sc,k) are

controlled using precoding matrices so as to not interfere with UE k when the SBSs inSc,k are

transmitting to UEk. Therefore,SINRc,k of UE k is obtained by using (2) as

SINRc,k =

∑

i∈Sc,k(t)
|hi,c,k(t)|2pi,c,k

∑

j∈X\Xk
|hj,c,k(t)|2pj,c,k + σ2

(3)

=
∑

i∈Sc,k(t)

gi,c,k(t), (4)

where gi,c,k(t) = |hi,c,k(t)|2pi,c,k/(
∑

j∈X\Xk
|hj,c,k(t)|2pj,c,k + σ2) if the power of mi,c,k(t) is

assumed to be 1. Note that the denominator of (3) does not include the interference from the

SBSs in(Xk \ Sc,k). Because the SINR of UEk in (3) depends on the signal strengths from

Sc,k(t), selecting a subset of appropriate SBSsSc,k(t) from Xk is crucial for the throughput

performance.

IV. ROBUST COORDINATED TRANSMISSION

A. Coordinated Transmission

We consider a coordinated transmission that enables multiple BSs to cooperate with each other

in order to improve the throughput performance of UEs. If a set of cooperating BSsXk provides

wireless connectivity service to UEk by making use of spatial diversity, the performance would

be improved compared to the case where only one of the neighboring BSs provides service to

UE k. However, message exchange overhead exists if the size ofXk is large because BSs in

Xk must share transmission data and CSI. Instead of using the entire set of BSs, a subset of
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Xk needs to be selected to participate in joint signal transmission to UEk. For the selection of

Sc,k(t), one may consider to minimize the total transmit power of BSsin Sk(t) under the SINR

requirement constraints as follows:

minimize
Sc,k(t)

∑

c∈C

∑

i∈Sc,k(t)

pi,c

subject to
∑

i∈Sc,k(t)

gi,c,k(t) ≥ γ for ∀c ∈ C.
(5)

For simplicity, the aforementioned optimization is decomposed for each subcarrier as follows:1

MIN-POWER method
minimize

Sk(t)

∑

i∈Sk(t)

pi

subject to
∑

i∈Sk(t)

gi,k(t) ≥ γ.
(6)

Note that as addressed in Section II, there exist several approaches [11], [12] that have used an

optimization strategy similar to (6), and JSPA [11] will be evaluated for comparison purposes

in Section V. However, because SBSs are usually powered by anelectrical outlet, what is more

important than power consumption in the selection of an SBS is the impact on the QoS of UEs

served by an SBS when the SBS is newly selected to provide service to another UE.

We propose a new criterion for SBS selection, which is to select a subset of SBSs with low

resource utilization for joint signal transmission to UEk at subcarrierc. Determining a subset

of cooperative SBSs without considering their utilizationmay lead to a degradation of service

capability. An SBS with low utilization can accept more service requests from UEs without

degrading the QoS of ongoing services. On the other hand, if afew SBSs that are close to UEs

are selected in a hotspot area, the SBSs are easily overloaded, and the QoS provided by the SBSs

eventually degrades. Instead of high-utilization SBSs, itis desirable to select low-utilization SBSs

to improve the throughput performance of UEk by cooperatively providing service to the UE.

We determineSk(t) that minimizes the sum of utilizationui(t), i ∈ Sk(t) while satisfying the

SINR threshold requirement. The selection problem is formulated as follows:

MIN-UTIL method
minimize

Sk(t)

∑

i∈Sk(t)

ui(t)

subject to
∑

i∈Sk(t)

gi,k(t) ≥ γ
(7)

1Hereafter, we omit the subscriptc for notational simplicity.
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UE k is served at time slott by the SBSs inSk(t) obtained from (7).

We further extend the MIN-UTIL optimization in (7) to robustoptimization in order to

compensate for uncertainty in parameter estimation. In (7), gi,k is a parameter to be estimated,

and it is susceptible to interference from noncooperative SBSs (i.e.,X \ Xk) for UE k. If the

SINR constraint is not satisfied owing to estimation uncertainty, the joint transmission by the

selected SBSs is unnecessarily wasted because UEk does not have an SINR high enough for

successful communication. Whilegi,k(t) is a nominal value to be estimated and used in the

optimization, the actual value of the uncertain parameterg̃i,k(t), j ∈ Sk(t) is assumed to be in

the range of[gi,k(t)− ĝi,k(t), gi,k(t)+ ĝi,k(t)] [14]. The robust optimization for (7) is formulated

as follows:

ROBUST-MIN-UTIL method

minimize
Sk(t)

∑

i∈Sk(t)

ui(t)

subject to
∑

i∈Sk(t)

gi,k(t)− βSk(t)(Γ) ≥ γ,
(8)

whereβSk(t)(Γ) = max{A|A⊆Sk(t),|A|=Γ}{
∑

i∈A ĝi,k(t)}. In (8), the robustness of the system is

adjusted by an integer parameterΓ, 0 ≤ Γ ≤ |Sk(t)|. This implies that the robust solution

obtained by (8) does not violate the SINR constraint if the number of g̃i,k(t)’s that have a

significant discrepancy relative to the corresponding nominal values does not exceedΓ. Therefore

the SBSs obtained from (8) provide more robust service to theUE than those obtained from (7)

when an uncertainty in parameter estimation exists, which is always the case in practice.

B. Algorithm for a Binary Selection Problem

The optimization of (8) is a binary selection problem that minimizes the aggregate utilization

of the selected SBSs while satisfying the SINR constraint. We first transform the minimization

problem to an equivalent maximization form as follows:

maximize
Zk

∑

i∈Zk=(Xk\Sk(t))

ui(t)

subject to
∑

i∈Zk

gi,k(t) ≤
∑

i∈Xk

gi,k(t)− γ − βSk(t)(Γ).
(9)

Note that the maximization of the aggregate utilization of SBSs in Zk is equivalent to the

minimization of the aggregate utilization of SBSs inSk(t). One may solve this binary integer
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Algorithm 1 Algorithm for solving a binary selection problem
1: // For ∀i, i ∈ {0, · · · , x} wherex is the number of SBSs.

2: // For ∀g′k, g′k ∈ {0, · · · , y} wherey is the maximum bound of normalized SINR sum.

3: // g′i,k is the normalized SINR value from SBSi to UE k.

4: // ui(t) is the utilization value of SBSi.

5:

6: SetV (i, 0) = 0 for ∀i, and setV (0, g′k) = 0 for ∀g′k.

7: For ∀(i, g′k), calculateV (i, g′k) as follows:

8: if g′i,k > g′k then

9: V (i, g′k) = V (i− 1, g′k)

10: else

11: V (i, g′k) = max{V (i− 1, g′k), V (i− 1, g′k − g′i,k) + ui(t)}
12: end if

13:

14: Let i = x, andg′k = y.

15: while i > 0 andg′k > 0 do

16: if V (i, g′k) 6= V (i− 1, g′k) then

17: mark theith SBS

18: g′k = g′k − g′i,k, i = i− 1

19: else

20: i = i− 1

21: end if

22: end while

programming problem using a brute-force search, but its complexity is given byO
(

2|Xk|
)

, which

is too expensive to be solved in practice.

Owing to the high complexity of (9), we solve the problem in two steps and obtain a suboptimal

solution. In the first step, we select a set of SBSs by settingβSk(t)(Γ) = 0, which corresponds to

the solutions of the MIN-UTIL method in (7). In the second step, more SBSs are selected from

the set of SBSs that are not selected in the first step in order to compensate for the uncertainty

in parameter estimation. Note thatβSk(t)(Γ) is approximated as a constant, which is obtained

using the solution obtained in the first step.

In each step, we use dynamic programming in order to find a solution for the binary selection

problem [15]–[17]. Algorithm 1 shows the procedure of the dynamic programming used for
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TABLE I

A TABLE FOR SOLVING THE BINARY SELECTION PROBLEM USING DYNAMIC PROGRAMMING.

g′k = 0 g′k = 1 g′k = 2 · · · g′k = y

i = 0 V (0, 0) V (0, 1) V (0, 2) · · · V (0, y)

i = 1 V (1, 0) V (1, 1) V (1, 2) · · · V (1, y)

i = 2 V (2, 0) V (2, 1) V (2, 2) · · · V (2, y)

...
...

...
...

...

i = x V (x, 0) V (x, 1) V (x, 2) · · · V (x, y)

solving (9). The algorithm is based on the tabulation of maximum values of the aggregate

utilization. Table I shows the table of a parameterV (i, g′k), which represents the maximum value

of the aggregate utilization that can be attained using SBSsup to i under the constraint that the

summation of SINR is less than or equal tog′k. In this algorithm,gi,k(t) must be normalized for

the tabulation in Table I such that the normalized versiong′i,k of gi,k has a certain large integer

value, which corresponds to the width of the table. That is,g′i,k = ⌊gi,k(t)/(ǫg|Xk|,k(t)/|Xk|)⌋
andγ′ = ⌊γ/(ǫg|Xk|,k(t)/|Xk|)⌋ for ǫ > 0. Here,ǫ is set to 0.1. Note that the SBSs are assumed

to be sorted in ascending order ofgi,k(t).

Let S ′
k andS ′′

k be the solution for the first and second step, respectively.S ′
k is obtained using

Algorithm 1 with x = |Xk| andy =
∑

i∈Xk
g′i,k−γ′. In Algorithm 1, the table for the parameter

V (i, g′k) is initialized in line 6. In lines 7 to 12, each elementV (i, g′k) of the table is recursively

calculated as follows:

V (i, g′k) =











V (i− 1, g′k), if g′i,k > g′k,

max{V (i− 1, g′k), V (i− 1, g′k − g′i,k) + ui(t)}, otherwise.
(10)

Using the table forV (i, g′k) as shown in Table I, the algorithm starts to inspect each element

of the table starting from the bottom right corner of the table, and if the condition in line 16 is

satisfied, it sets the corresponding SBS as marked. The algorithm stops when all the rows are

inspected, as described in lines 15 to 22. Eventually, the marked SBSs are selected as the SBSs

that maximize
∑

i∈Zk
ui(t), andS ′

k = (Xk \ Zk).

OnceS ′
k is obtained,S ′′

k can be obtained by choosing SBSs fromZk in order to compensate

for the uncertainty in parameter estimation. In (9),βSk(t)(Γ) is a function ofSk(t) but is assumed

to be a constant given byβS′

k
(t)(Γ). ThenS ′′

k can be obtained simply by repeating Algorithm 1

with x = |Zk| andy =
∑

i∈Zk
g′i,k − β ′. Note that the SBSs inZk are sorted in ascending order
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of gi,k(t). g′i,k = ⌊gi,k(t)/(ǫg|Zk|,k(t)/|Zk|)⌋ and β ′ = ⌊βSk(t)(Γ)/(ǫg|Zk|,k(t)/|Zk|)⌋ for ǫ > 0.

Finally, the SBSs in(S ′
k ∪ S ′′

k) are intended to cooperatively provide service to UEk.

The complexity of Algorithm 1 depends on the table size for the binary selection problem [16].

As the width and height of Table I areπ = (|Xk|+1) andθ = (
∑

i∈Xk
g′i,k−γ′+1), respectively,

the complexity is given byO
(

πθ
)

, which is much lower thanO
(

2|Xk|
)

for the brute-force search.

C. Outage Probability

In this section, we calculate the upper bound of the outage probability for the ROBUST-MIN-

UTIL method.

Theorem 1. Let S∗
k(t) and A∗ be an optimal solution of (8) and the corresponding set that

achieves the maximum forβS∗

k
(t)(Γ), respectively. Then the outage probability satisfies the fol-

lowing inequality:

Pr

(

∑

i∈S∗

k

g̃i,k(t) < b

)

≤ 1− Φ

(

Γ− 1
√

|Xk|

)

(11)

whereΦ(θ) = 1√
2π

∫ θ

−∞ exp(−y2

2
)dy and is the cumulative distribution function of a standard

normal distribution.

Proof. See the appendix.

The outage probability is calculated under the condition that a feasible solution exists. Note

that there is no feasible solution if the SINR is lower thanγ for Sk(t) = Xk.

V. PERFORMANCE EVALUATION

In this section, we present the results of a simulation designed to evaluate the performance

of the ROBUST-MIN-UTIL method in comparison with that of theMIN-POWER method, the

MIN-UTIL method, and the JSPA algorithm in [11]. The simulation has been carried out using

MATLAB. In this simulation,N SBSs andL UEs are randomly distributed in a square area.

Each SBS is assumed to simultaneously service up to50 UEs in accordance with its capacity

limitation. For a UEk, if an SBS’s distance from the UE is less than 1 km, it is included

in Xk. The signals from the SBSs are transmitted at a 2.6-GHz center frequency through an

AWGN channel with a power of 0.01 W, and the path loss exponentis set to 3. As described in

Section IV, the channel estimation is susceptible to uncertainty, which is modeled as a normal

distribution. For the simulation of the MIN-POWER method in(6) and the MIN-UTIL method
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Fig. 2. Outage probability comparison forΓ (|X| = 45, |Xk| = 30, L = 80).

in (7), a certain amount of SINR margin that is proportional to γ (i.e.,αγ) is added to the SINR

constraints. Without the SINR margin, the optimizations exhibit high outage probability because

of the channel estimation uncertainty. Note thatβSk(t)(Γ) in (8) can be considered as a margin

that is given as a function ofSk andΓ, while the margin in (6) and (7) is simply proportional

to the SINR thresholdγ.

Fig. 2 shows the analytic upper bound in (11) and the simulation results for the outage

probability. Note that the outage probability forΓ = 0 in the figure corresponds to that for

the MIN-UTIL method. We observe that the outage probabilities of the ROBUST-MIN-UTIL

method do not exceed the analytic upper bound in (11). In the figure, the outage probability

of the ROBUST-MIN-UTIL method decreases asΓ increases because more SBSs are selected

with a largerΓ. In the entire range ofΓ, the outage probability forγ = 20 is greater than that

for γ = 12.5 because asγ becomes higher, more SBSs must be selected to satisfy the SINR

constraint.

Fig. 3(a) and 3(b) show the normalized number of UEs in service when there are 80 and

120 UEs, respectively. In the simulation, the ROBUST-MIN-UTIL method calculates the SINR

margin with regard toSk and Γ according toβSk(t)(Γ) = max{A|A⊆Sk(t),|A|=Γ}{
∑

i∈A ĝi,k(t)},

while the MIN-POWER and MIN-UTIL methods determine the SINRmargin proportionally

to γ. The simulation results in Fig. 3(a) show that, whenα = 0.02, the performance of the
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(a) Normalized number of UEs in service whenL = 80
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(b) Normalized number of UEs in service whenL = 120

Fig. 3. Performance comparison of the methods(|X| = 45, |Xk| = 30).

ROBUST-MIN-UTIL method is always better than that of the other methods because the small

SINR margins of the MIN-POWER and MIN-UTIL methods cause a high outage probability.

Note that the JSPA method in [11] does not consider the SINR margin for protection against

channel estimation uncertainty. Whenα = 0.12, the performance of the MIN-POWER method is

still lower than that of the ROBUST-MIN-UTIL method. Even though the SINR margin increases

and each UE experiences low outage performance, SBSs that are close to UEs can easily become
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overloaded because they service excessive UEs. On the otherhand, the performance of the MIN-

UTIL method withα = 0.12 increases asγ increases untilγ = 17, and the MIN-UTIL method

shows better performance than the ROBUST-MIN-UTIL method whenγ ≥ 17.

Since both the ROBUST-MIN-UTIL method and the MIN-UTIL method make use of low-

utilization SBSs to avoid QoS degradation of ongoing services caused by overloaded SBSs, the

performance is highly dependent on the amount of SINR margin. Hence, whenβSk(t)(Γ) of the

ROBUST-MIN-UTIL method is smaller than the SINR marginαβ of the MIN-UTIL method, the

performance of the ROBUST-MIN-UTIL method is lower than that of the MIN-UTIL method.

However, the performance of the MIN-UTIL method also eventually decreases, as shown in the

simulation results, whenγ ≥ 17. This is because excessive SBSs are selected to maintain the

outage performance of UEs. As a result, the total number of UEs in service decreases. Moreover,

whenγ ≥ 17, the MIN-UTIL method consumes many more resources than the ROBUST-MIN-

UTIL method. The usage of resources is depicted in Fig. 4.

Fig. 3(b) shows the simulation results when the number of UEsis 120. In this case, the

performance comparison between the ROBUST-MIN-UTIL method and the MIN-UTIL method

is similar to the results in Fig. 3(a), except that the performance of both methods decreases more

quickly asγ increases. However, unlike the simulation results in Fig. 3(a), both the ROBUST-

MIN-UTIL method and the MIN-UTIL method always show better performance than the MIN-

POWER method. The MIN-POWER method selects SBSs that are close to UEs even if they

are highly utilized. Hence, as the number of UEs increases, SBSs that are close to UEs are

repeatedly selected and become overloaded, causing degradation in the QoS. On the other hand,

the ROBUST-MIN-UTIL method and the MIN-UTIL method make useof low-utilization SBSs,

since they select SBSs in a way that minimizes the utilization sum of selected SBSs. Therefore

the ROBUST-MIN-UTIL method and the MIN-UTIL method show better performance than the

MIN-POWER method, especially in a hotspot area with many UEs.

Fig. 4 shows the average transmit power and utilization of SBSs for the simulation in Fig. 3(a).

Note that the SINR margins for both the MIN-POWER and the MIN-UTIL methods increase as

α increases because the SINR margin is calculated asαγ. Fig. 4(a) shows that whenα = 0.02,

both the MIN-POWER method and the MIN-UTIL method require lower transmit power than

the ROBUST-MIN-UTIL method. In these cases, the outage probability of the MIN-POWER

method and the MIN-UTIL method is higher than that of the ROBUST-MIN-UTIL method since

the SINR margin is too small to compensate for the channel estimation uncertainty. Therefore the
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Fig. 4. Average transmit power and utilization of SBSs(|X| = 45, |Xk| = 30, L = 80).

MIN-POWER and MIN-UTIL methods service fewer UEs, as shown in Fig. 3(a). Whenα = 0.12,

there are points at which the MIN-POWER and MIN-UTIL methodsconsume more power than

the ROBUST-MIN-UTIL method because the SINR marginαγ becomes larger thanβSk(t)(Γ) in

the ROBUST-MIN-UTIL method. Whenα = 0.12 andγ = 20, however, even though the MIN-

POWER method consumes more power than the ROBUST-MIN-UTIL method, the performance

of the ROBUST-MIN-UTIL method is better than that of the MIN-POWER method. On the other
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hand, the MIN-UTIL method shows better performance than theROBUST-MIN-UTIL method

whenα = 0.12 andγ ≥ 17.

However, the MIN-UTIL method requires much more power than the ROBUST-MIN-UTIL

method, as shown atγ = 20. Furthermore, whenγ = 14, although the ROBUST-MIN-UTIL and

MIN-UTIL methods consume similar average transmit power, the ROBUST-MIN-UTIL method

services more UEs than the MIN-UTIL method. This is because,despite the fact that the two

methods have the same SINR threshold, the number of requiredSBSs changes from time to time

owing to the difference in interference from noncooperative SBSs. Hence, deriving the SINR

margin from the selected SBSs is better than a static calculation of the SINR margin with regard

to γ. Note that the JSPA method in [11] limits the number of UEs that are served by multiple

SBSs in order to reduce the power consumption. As a result, the JSPA method consumes much

less power than the other methods, but it provides wireless service to a smaller number of UEs

than the other methods.

Fig. 4(b) shows the average utilization of SBSs that are selected to serve UEs. When the SINR

margin is small, the MIN-UTIL method shows lower utilization than the ROBUST-MIN-UTIL

method. When the SINR margin is large, there are certain points at which the ROBUST-MIN-

UTIL method shows lower utilization than the MIN-UTIL method. On the other hand, according

to the simulation results, the MIN-POWER method always shows higher utilization than both the

ROBUST-MIN-UTIL method and the MIN-UTIL method. This is because the ROBUST-MIN-

UTIL and MIN-UTIL methods select low-utilization SBSs instead of high-utilization SBSs,

while the MIN-POWER method selects SBSs that are close to UEseven if their utilizations are

high. Therefore the ROBUST-MIN-UTIL method and the MIN-UTIL method can avoid QoS

degradation of ongoing services more effectively than the MIN-POWER method. The JSPA

method shows constantly low utilization because the numberof UEs that are served by multiple

SBSs is limited in the JSPA method.

Fig. 5 shows the Jain’s fairness index for the utilization ofSBSs. The result of the Jain’s

fairness index ranges from1/|Xk| to 1, and the 1 means that the utilizations of all SBSs are the

same. The results indicate that the ROBUST-MIN-UTIL methodand the MIN-UTIL method are

better than the MIN-POWER method and the JSPA method in termsof fairness. This means that

a few SBSs are excessively selected when the MIN-POWER method or the JSPA method is used,

even though there are other SBSs with low utilization. On theother hand, the ROBUST-MIN-

UTIL method and the MIN-UTIL method select low-utilizationSBSs instead of high-utilization
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Fig. 5. Jain’s fairness index comparison of the methods(|X| = 45, |Xk| = 30, L = 80).

SBSs. Therefore, the ROBUST-MIN-UTIL method and the MIN-UTIL method can avoid QoS

degradation caused by SBSs with high utilization.

VI. CONCLUSION

In this paper, we have proposed a robust optimization-basedSBS selection method in which

low-utilization SBSs are selected to cooperatively provide service to UEs while compensating for

uncertainty in parameter estimation. The proposed method attempts to minimize the utilization of

neighboring SBSs and avoids service performance degradation caused by overloaded SBSs. It also

compensates for the uncertainty in parameter estimation for robust coordination transmission with

low outage probability. We have derived the upper bound of outage probability and compared the

upper bound with simulation results. The simulation results indicated that the proposed method

achieves robust and efficient service performance in a densesmall cell network.
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APPENDIX A

PROOF OFTHEOREM 1

We defineηi,k(t) = (g̃i,k(t)− gi,k(t))/ĝi,k(t) andηi,k(t) ∈ [−1, 1].

Pr

(

∑

i∈S∗

k
(t)

g̃i,k(t) < γ

)

= Pr

(

∑

i∈S∗

k
(t)

gi,k(t) +
∑

i∈S∗

k
(t)

ηi,k(t)ĝi,k(t) < γ

)

≤ Pr

(

∑

i∈S∗

k
(t)

gi,k(t) +
∑

i∈S∗

k
(t)

ηi,k(t)ĝi,k(t) <
∑

i∈S∗

k
(t)

gi,k(t)m(t)− βSk(t)(Γ)

)

≤ Pr

(

∑

i∈S∗

k
(t)

ηi,k(t)ĝi,k(t) < −
∑

i∈A∗

ĝi,k(t)

)

≤ Pr

(

∑

i∈S∗

k
(t)\A∗

ηi,k(t)ĝi,k(t) < −
∑

i∈A∗

(1− ηi,k(t))ĝa∗,k(t)

)

= Pr

(

∑

i∈S∗

k
(t)\A∗

ĝi,k(t)

ĝa∗,k
ηi,k(t) <

∑

i∈A∗

ηi,k(t)− Γ

)

= Pr

(

Γ <
∑

i∈S∗

k
(t)

νi,kηi,k(t)

)

, (12)

where

νi,k =











1, if i ∈ A,

− ĝi,k(t)

ĝa∗,k
, if i ∈ S∗

k \ A,

anda = arga∈A min ĝi,k(t). By using the theorem in [14], the probability in (12) is lessthan or

equal to1− Φ

(

Γ−1√
|Xk|

)

.
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