Greedy Data Dissemination Algorithm for Infrastructure-to-Vehicle Services

Inshick Kim, Ryangsoo Kim, Hyuk Lim

Kyung-Joon Park

Wireless Communications and Networking Lab. School of Information and Communications Gwangju Institute of Science and Technology (GIST)

http:/wits.gist.ac.kr

Cyber-Physical Systems Integration Lab Dept. of Information and Communication Engineering Daegu Gyeongbuk Institute of Science & Technology (DGIST)

http://csi.dgist.ac.kr

aegu Gyeongbuk stitute of Science & Technology

Vehicular Cloud System (VCS)

- Cloud services in vehicular networks
 - New emerging technology that can provide data dissemination service in advance for various information applications.
 - Data downloading services
 - Accident/traffic information service

Prefetching for Data Dissemination

\blacklozenge To expedite the data dissemination to vehicles

- Pre-fetch some data from the data center in advance.
 - Vehicle route is predictable from online navigation and local term achieved traces.

Example Scenario

• Vehicle A wants to download a data chunk during the journey.

Policy 1 - inefficient

Every AP on the path has the data chunk

Prefetching for Single Route

◆ How to select a subset of APs?

 Choose APs with high connectivity with the vehicle in a greedy manner until the dissemination failure probability becomes lower than a threshold.

	(m)) AP 1	AP 2				Select AP in the descending
connectivity	θ ₁	θ_2	θ_5	θ_6	θ_9	order of θ_i until $p_A < \varepsilon$.
selection decision	x ₁	x ₂	Х ₅	x ₆	x ₉	·
dissemination failure probability	p _A	= (1 –	θ ₁ x ₁) ((1 – θ ₂)	x ₂) (1	$- \theta_5 x_5$) ($1 - \theta_6 x_6$) ($1 - \theta_9 x_9$)

Prefetching for Multiple Routes

♦ How to select a subset of APs?

- Minimize the amount of data transferred from a data center to roadside APs

System Model

Assumptions for the vehicular cloud system

- A data is divided into a number of small chucks.
- The vehicle route can be predicted from on-line navigation.
- Each AP is placed at an intersection and has a limited transmission coverage.
- Each AP has a stochastic characteristic for communication.

Parameters used for system modeling

Parameter	Description			
W	Number of wireless APs			
v	Number of vehicles			
и	Number of data chunks			
R	Chunk request binary matrix			
S	Vehicle route matrix			
t	Communication probability vector			
Х	Binary decision matrix			
Р	Dissemination failure probability matrix			

Proposed Dissemination Algorithm

\blacklozenge Optimization formulation

- Minimize the total amount of data transfer while keeping the dissemination failure probability lower than a threshold.
 - minimize $\mathbb{1}_w^T \cdot \mathbf{X} \cdot \mathbb{1}_u$

subject to
$$\|\mathbf{R} \odot \mathbf{P}\|_{max} \le \epsilon$$
 • ϵ

 $\mathbf{X} \in \{0,1\}^{w \times u},$

- $\mathbb{1}_l \in \mathbb{R}^l$: All-ones vector
 - : Tolerable dissemination failure probability
- • Hadamard product operation (i.e., $(A \odot B)_{i,j} = (A)_{i,j} \times (B)_{i,j}$)

Deterministic greedy data dissemination algorithm

Algorithm 1 Proposed greedy algorithm

1: // Index set
$$\mathcal{A}_{\mathbf{x}_{j}}$$
 : $\mathcal{A}_{\mathbf{x}_{j}} = \{i: x_{i,j} = 0, x_{i,j} \in \mathbf{x}_{j}, \forall i\}$
2: // Objective function $f(\mathcal{A}_{\mathbf{x}_{j}}) = f(\mathcal{A}_{\mathbf{x}_{j}}) = w - \mathbf{1}_{w}^{T} \cdot \mathbf{x}_{j}$
3: for $j = 1$ to u do
4: // Initialization
5: $\mathbf{x}_{j} = \operatorname{argmin}_{\mathbf{x}_{j} \in \{0,1\}^{W \times 1}, |\mathcal{A}_{\mathbf{x}_{j}}| = 3} \| \mathbf{r}_{j} \odot \mathbf{p}_{j}(\mathcal{A}_{\mathbf{x}_{j}}) \|_{max}$
6: // Main loop
7: while $\mathcal{A}_{\mathbf{x}_{j}} \neq \mathcal{A}_{0_{W \times 1}}$ do
8: Find the index $i^{*} = \operatorname{argmin}_{(i^{*}} \in \mathcal{A}_{w \times 1} \setminus \mathcal{A}_{\mathbf{x}_{j}}) \| \mathbf{r}_{j} \odot$

Simulation Results

◆ Performance of the proposed greedy algorithm

- # of wireless APs = 50, # of data chunks = 100.

Conclusion

Conclusion

- We proposed a greedy algorithm to minimize the amount of data transferred from a data center to the wireless APs.
- We verified that the proposed scheme could achieve efficient data dissemination in a variety of vehicular scenarios.

