
MARS: Measurement-based Allocation of VM Resources
for Cloud Data Centers

Chiwook Jeong, Taejin Ha, Jaeseon Hwang, Hyuk Lim, and JongWon Kim
School of Information and Communications

Gwangju Institute of Science and Technology (GIST), Republic of Korea
Email: hlim@gist.ac.kr

ABSTRACT
High performance data centers use virtualization technique
which enables each physical server machine to host multiple
virtual machines (VMs) to achieve highly efficient resource
utilization. In this paper, we propose a measurement-based
approach for efficient allocation of virtualized resources in
hyper-convergence environments where virtualized comput-
ing, networking, and storage resources are unified and con-
verged. Using real-time measurements of service perfor-
mance metrics, our proposed approach identifies the VM
with the worst performance resulting from over-utilized re-
source, and gradually adjusts the amount of resources al-
located to it in order to improve its performance. The re-
sults of empirical evaluations conducted indicate that our
proposed approach can realize efficient resource allocation
among VMs with varying resource demands.

Categories and Subject Descriptors
C.4 [PERFORMANCE OF SYSTEMS]: Measurement
techniques; K.6.2 [MANAGEMENT OF COMPUT-

ING AND INFORMATION SYSTEMS]: Installation
Management—Performance and usage measurement; Pric-
ing and resource allocation

Keywords
Hyper-convergence; cloud computing; resource allocation;
performance measurement

1. INTRODUCTION
Rapidly increasing demands for the construction of cost

effective data centers have led to a wide deployment of vir-
tualization technology [1] and a development of new hyper-
convergence technology [2]. Hyper-convergence is an ad-
vanced resource virtualization technique that enables the
cost effective integrated management of virtualized resources
such as computing, networking, and storage. Consequently,

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise,or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CoNEXT Student Workshop’13, December 9, 2013, Santa Barbara, CA, USA.
Copyright 2013 ACM 978-1-4503-2575-2/13/12 ...$15.00.
http://dx.doi.org/10.1145/2537148.2537161.

small and medium-sized data centers have adopted hyper-
convergence technology in order to provide cost effective ser-
vices.

Research on virtual resource allocation is categorized into
two major approaches: reactive-based approaches [3–6] and
predictive-based approaches [7–9]. In reactive-based approaches,
virtual resources allocation is performed according to the lat-
est monitored utilization values or pre-defined rules. VMware
[3] proposed a distributed resource scheduler (DRS) that dy-
namically balances resource allocation among VMs by ex-
ploiting their resource utilization information. Amazon [4]
also provides an autoscaling service that correlates with user
demand by allocating the amount of resources and the time
period specified by each paying user. Nathani et al. [5] pro-
posed a planning-based deadline-sensitive scheduling algo-
rithm that is based on the deadline and resource utilization
information of VMs. Han et al. [6] proposed a cost-aware
scaling algorithm for elastic resource allocation that consid-
ers both short-term and long-term workload variations.

In predictive-based approaches, resource allocation is per-
formed in accordance with anticipated near-future needs.
Song et al. [7] proposed a multi-tiered resource scheduling
scheme called the global resource flowing algorithm (GRFA),
which re-allocates resources to VMs according to their own
resource-flowing model based on the anticipated number of
requests for service. Weng et al. [8] proposed a tuning strat-
egy that estimates the amount of resources and the workload
on VMs using the modified Roth-Erev learning algorithm.
Jiang et al. [9] proposed a cloud resource autoscaling scheme
that predicts the number of requests and estimates future
resource demands, with a trade-off between cost and latency.

2. PROPOSED RESOURCE ALLOCATION
STRATEGY

To achieve higher resource utilization efficiency than that
achieved by previous methods, we propose a measurement-
based resource allocation strategy (MARS). The proposed
method first directly measures service performance and then
adjusts the virtual resources allocated to the VMs to increase
the performance of the VM with the worst performance re-
sulting from over-utilization of the assigned resources. In
contrast to conventional approaches, which primarily use re-
source utilization and workload statistics, MARS uses real-
time measurement of service-specific performance metrics.

Let us first consider a single physical server machine run-
ning n VMs. Suppose that each VM provides a service with
different demands for virtual resources such as CPU, mem-
ory, and network bandwidth. Because of the different re-



Algorithm 1 Proposed resource allocation strategy

1: // res: CPU, memory, or network bandwidth.
2: for VM i=1 to n do

3: r(i)← response time for service requests on VM i

4: Tres(i) ← total over-utilized resource duration when
Ures(i) > U thr

res on VM i

5: end for

6: j ← argmax
i

r(i)

7: res← max
res

Tres(j)

8: for VM i=1 to n do

9: if (Ures(i) < U thr

res ) then
10: Rres(i)← (1− αres) ∗Rres(i)
11: Rres(j)← Rres(j) + αres ∗Rres(i)
12: end if

13: end for

14: Resource re-allocation for all VMs in accordance with
Rres.

source demands by the VMs, resource utilization per VM
will be highly imbalanced if the resources are evenly dis-
tributed among the VMs. By using service performance
measurements, we identify the response time and the over-
utilized time for different resources as performance metrics.
Then, on the basis of the real-time measurements, we select
the VM with the worst performance and its highly over-
utilized resource, because resource over-utilization is a dom-
inant factor that causes significant degradation in service
performance. Finally, if there are under-utilized resources in
other VMs, we re-allocate them to the VM identified above
in order to improve its performance.
Algorithm 1 is the pseudo-code for MARS. A central con-

troller periodically invokes the resource allocation algorithm.
The algorithm first measures the service response time and
the total time during which the resource is over-utilized
above the utilization threshold, U thr

res . On the basis of the
real-time measurements obtained, it selects the worst per-
forming VM (denoted by j) and identifies the resource (de-
noted by res) that is being over-utilized for the longest
time. Then, if another VM has the identified resource that
is under-utilized below U thr

res , i.e., the resource with a low
resource demand, a certain portion αres of that resource is
inserted into the resource pool. Finally, the resource in the
pool is reallocated to all the VMs in accordance with Rres.

3. PERFORMANCE EVALUATION
To evaluate the performance of MARS, we constructed

a small cloud testbed using KVM [10], OpenStack [11], and
OpenvSwitch [12], and compared MARS with the naive (1/n)
scheme, which evenly distributes virtualized resources to n

VMs at initialization. The scenario used in the the exper-
iment was that each VM is running a web server, which
handles 10,000 HTTP requests. We used the weighttp tool
to generate HTTP workloads for performance benchmark,
the virt-top tool to measure the network resource, and the
top tool to measure the CPU and memory resources. We
also measured the average response time as a performance
metric. The system parameters αres and U thr

res for all the
resources are set to 0.1 and 0.85, respectively.
Figure 1 depicts the worst and average response times

with respect to the number of VMs. Note that the worst re-
sponse time is that of the VM that has the longest response

 0

 0.2

 0.4

 0.6

 0.8

 1

 3  6  9  12

R
es

po
ns

e 
tim

e 
(m

s)

Number of VMs

Worst (1/n)
Average (1/n)
Worst (MARS)
Average (MARS)

Figure 1: Average response time with respect to the

number of VMs.

time among all the VMs. When the number of VMs is small
(i.e., three and six), the worst and average performances of
each scheme are almost the same because all the VMs have
enough resources to serve their workload. As larger numbers
of VMs are configured, the performance of MARS gets bet-
ter than that of the (1/n) scheme because MARS identifies
the VM with the worst performance and allocates more re-
sources to it. It is seen that MARS achieves improvements of
approximately 40 % and 21.5 % in the the worst and average
performances, respectively, compared to the (1/n) scheme.
Using MARS, when the number of VMs is large, the discrep-
ancy between the worst and average performances is quite
small, with a small average response time. This indicates
that the resources are appropriately allocated among all the
VMs with different resource demands.

4. CONCLUSIONS
In this paper, we proposed a measurement-based resource

allocation strategy (MARS) that reallocates under-utilized
resources to the VM with the worst performance in terms
of the measured service performance and the length of time
during which its resources are over-utilized. By means of
experiments conducted on a small cloud testbed, we verified
that MARS achieves efficient resource allocation by effec-
tively utilizing computing and network resources on VMs.
In future work, we plan to extend MARS to manage the
storage resources in hyper-convergence environments, where
the computing, networking, and storage resources are uni-
fied among VMs.

5. ACKNOWLEDGMENTS
This research was supported in part by National Informa-

tion Society Agency (KOREN project 13-951-00-001), and
by the Industrial Strategic Technology Development Pro-
gram (10047577) funded by the Ministry of Science, ICT
and Future Planning, Korea.



6. REFERENCES
[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph,

R. Katz, A. Konwinski, G. Lee, D. Patterson,
A. Rabkin, I. Stoica, and M. Zaharia. A view of cloud
computing. Communications of the ACM, 53(4):50–58,
2010.

[2] Hyperconvergence for Virtualization.
http://www.scalecomputing.com/files/documentation/hc3-
whitepaper-hyperconvergence.pdf.

[3] VMware. http://www.vmware.com/.

[4] Amazon Autoscaling.
http://aws.amazon.com/autoscaling/.

[5] A. Nathani, S. Chaudhary, and G. Somani. Policy
based resource allocation in IaaS cloud. Elsevier
Future Generation Computer Systems, 28(1):94–103,
2012.

[6] R. Han, M. M. Ghanem, L. Guo, Y. Guo, and
M. Osmond. Enabling cost-aware and adaptive
elasticity of multi-tier cloud applications. Elsevier
Future Generation Computer Systems, 2012.

[7] Y. Song, H. Wang, Y. Li, B. Feng, and Y. Sun.
Multi-tiered on-demand resource scheduling for
VM-based data center. In Proc. of IEEE/ACM
International Symposium on Cluster, Cloud, and Grid
Computing (CCGrid), 2009.

[8] C. Weng, M. Li, Z. Wang, and X. Lu. Automatic
performance tuning for the virtualized cluster system.
In Proc. of IEEE International Conference on
Distributed Computing Systems (ICDCS), 2009.

[9] J. Jiang, J. Lu, G. Zhang, and G. Long. Optimal
Cloud Resource Auto-Scaling for Web Applications. In
Proc. of IEEE/ACM International Symposium on
Cluster, Cloud, and Grid Computing (CCGrid), 2013.

[10] Kernel-based Virtual Machine (KVM).
http://www.linux-kvm.org/.

[11] OpenStack. http://www.openstack.org/.

[12] Open vSwitch. http://openvswitch.org/.


