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Abstract

Given the widespread deployment of IEEE 802.11-based aqmésts (APs), received signal strength (RSS)-based
localization algorithms, which estimate the location aeots by measuring RSS at the installed APs, have drawn
considerable attention due to their simple implementagilmmgside existing infrastructure. However, the accurafcy
RSS-based localization depends heavily on the RF and gepitiedracteristics between the client and the APs. In
order to improve the localization accuracy, the selectibmaro appropriate AP set without outliers is an important
and challenging issue. In this paper, we first propose to usen&-Rao Bound, obtained from the average Fisher
Information Matrix, as a criterion for selecting an appiap AP set. Then, based on the proposed selection criterion
we develop a batch beacon selection algorithm that seamhélse possible AP sets. Furthermore, to implement
real-time mobile client localization by alleviating contptional complexity, we devise an online beacon selection
algorithm. This employs a simple but effective method teeseh portion of APs from all of those possible, such
that the number of AP sets is reduced.

Index Terms

Beacon selection; localization; Cramér-Rao bound; Fighfermation.

I. INTRODUCTION

In last few years, IEEE 802.11-based WLANs have been wideplayed in areas with a high volume of users,
such as universities, airports, office complex, and shappénter. Based on these wireless networking systems, we
are able to implement GPS-free localization system as amnaltive provider of location information for location-
aware services, e.g., indoor navigation for passenger iairgort, location detection for fireman in a building on
fire, and inventory control in a shopping center (Liu et al020Wang et al. 2012; Lee et al. 2006; Carlos et
al. 2011; Fang et al. 2012; Kang et al. 2012). Hence, a greataferesearch has been carried out on GPS-free
localization systems for the existing WLAN infrastructygia et al. 2012; Zhang et al. 2011; Fang et al. 2010;
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Chang et al. 2010). In particular, received signal streiB®S)-based localization systems have drawn considerable
attention, because the RSS measurements are easily abltgimeery IEEE 802.11 interface without any additional
cost.

However, the RSS-based localization accuracy is heavipedéent on RF and geometry characteristics between
client and the access points (APs). RF characteristicd) sscmulti-path fading and signal attenuation due to
changes in temperature, humidity, and object mobility,seafluctuations in the RSS measurement result that may
affect the calculation of geographic distance betweemtkad AP (Lim et al. 2006; Zanca et al. 2008; Santiago
et al. 2009; Guo et al. 2011). Furthermore, geometry chariatits, such as the distance and angle to the client,
and the array and the number of APs, influence the estimateSeott location that utilize the distances to, and
geometry information of, APs. Therefore, it is importantréaluce the influence of undesirable RF and geometry
characteristics, which cause a degradation in the accuftte estimated client location, as much as possible.

There are many research results concerning the improvenfi€$S-based localization accuracy. In Yang et al.
(2009), regression- and correlation-based signal prdagaodels were proposed that enhance the relationship
between geographic distance and RSS measurement dataer-am adapted multi-lateration method to improve
robustness to RSS measurement errors was presented indfuretual. (2009). Note that, for the analysis of
estimation error, Cramér-Rao Bound (CRB) is widely usedbialization literature because it represents a lower
bound on the covariance of an unbiased estimator. In Cattvad. (2004), Larsson et al. (2004), Hossain et al.
(2010), and Patwari et al. (2003), the localization systeme analyzed with respect to CRB to individually assess
the impact of different RF and geometry characteristicsparticular, Patwari et al. (2003) showed that a lower
bound on the covariance of a location estimator decreasetbas reference nodes were added, assuming that the
reference nodes had the same RSS measurement variance.

While these RSS-based research efforts have inspired tiséngxwork, there is still room for localization
accuracy improvement, especially with respect to deterngian appropriate set of reference nodes (usually 802.11
AP nodes) in areas where a number of APs are deployed. Bytisglem appropriate AP set, in which the APs are
affected by relatively low RF and geometry characteristicgs possible to alleviate the localization error. There
exists a beacon selection scheme using the CRB as the amiteriselect the subset of beacon nodes (Lieckfeldt et
al. 2008).However, the CRB method of selecting the best set of AP nodes cannot be directly adopted because, if
only the number of selected AP nodes increases, the CRB accordingly decreases. This may imply that increasing
the number of AP nodes is one method of improving the loctdinaaccuracy. However, increasing the number of
AP nodes is liable to degrade the localization accuracy wdmne APs have inaccurate RSS measurement data.
Moreover, the large number of APs gradually increases thgpatational overhead of estimating the client location.
In order to resolve this problem, we propose to use the CRE;wik obtained from the average Fisher Information

Matrix (FIM), as a criterion to select an appropriate AP $skeéreby improving the localization accuracy.
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Il. SYSTEM MODEL

We consider an RSS-based localization in an extended seseic(ESS) of an enterprise IEEE 802.11 wireless
local area network (WLAN) composed &f basic service sets (BSSs), denotedWy= {1,---, N}. The deployed
location of the AP in each BSS is assumed to be known and blaita all mobile devices belonging to the
ESS. Note that the APs in the ESS serve as beacon nodes, vaitinkoncations for the localization service. Let
0 = 61,02, -- ,0x] denote the location vector of the APs, whére= [z;,y;]7 is the location of the-th AP, and
p = [p1,p2,- - ,pm]T denote the RSS vector, whepgis the RSS from thé-th AP to a target node, of which the
location is given byd; = [z;,y:]”. The distance vector between the APs and the target noderisabtained as
d = [dy,da,- - ,dn]T, whered; is the geographical distance between itth AP and the target node and is given
by the following Euclidean distance:

di = [|60; — 64| 1)

We also assume that the RSS follows a log-normal shadowirdemuahich is given by:

d
P =p: 1y — 10 IOg(d_) +n, (2)

r
wherely € RY is the column vector whose elements arel1js a reference distancg, is the RSS value at the
reference distance is a path loss exponent, amd= [n1,ns,--- ,ny]7 is @ measurement noise vector that follows
Gaussian distribution with a zero mean and a covariancexaft® = diago?, - - - , 0%,). Given a measured RSS
vector ofp, the distances to the APs can be simply estimated as follows:

Priy—p

d=d, 100770 ), 3

By using the AP locations and estimated distances, theitotaf the target node is computed via a Linear Least
Square (LLS) approach as follows:

- 1

b = 5(XTX)" Xy, @)

where

X =07 - (LN]I%) 0",

and
y — diag”8 — ad’] - ]IWN(traCE{GTO] ~dd),

Because the Euclidean distance formula in (1) is nonlirieahould be expressed as a linear equation in order to

be suitable for the LLS approach. To convert the Euclideatadce formulal; = \/(Gi —6,)T(6; — 6;) to a linear
equation, we raise equation (1) to the power of 2 and therrem:ﬂ% DN d? to eliminate the second-order terms
with respect tod;. Based on the converted linear equations and the estim@thces, we are able to apply the

LLS approach to compute the location of the target node.
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IIl. PROPOSED BEACON SELECTION SCHEME

Consider an RSS-based localization in a hotspot area seindg a number of APs. In such an area, a target
node with an unknown location can be localized by utilizingod the APs within the communication range of
the target node as beacon nodes. However, the localizatimuracy may become worse if the target node utilizes
all of the available APs, rather than a smaller subset. Thibdcause one or more APs leading to inaccurate
distance estimation results, i.e., outliers, degrade dbalization accuracy. Therefore, we are able to improve the
localization accuracy by selecting an appropriate set of A#beacon nodes. In order to select an appropriate set of
APs, we need a selection criterion, and we thus adopt the @REh represents a lower bound on the covariance

of unbiased parameter estimation.

A. Fisher information and CRB

Under the assumption that the measurement noise followsuadan distribution with zero mean and variance
o? (in dB), the probability density function (PDF) of can be easily derived, and is denoted BYie. (pil6:) in
Patwari et al. (2003). Usingj,, s, (p:|0:), the FIM for thei-th AP is obtained as follows:

b,

I, = v
16, — 0]|*

(0 — 0:)(6: — 0;)7, ®)

2
whereb; = (gil.?ﬁo) . Suppose that a set of NV is available for localization of the target node (i%£.C N).
The variance of the estimated location for the target nodbaa bounded below by the trace of the CRB, which

is obtained by the inverse of the FIM:

W(S) = trace (ZL) . (6)

icS
In Patwari et al. (2003), it is shown that the lower bound far variance of the location estimate decreases as more
APs are used to estimate the target node location, becagiskeaiiponal terms of FIM increase for a larger Sewith

more APs. This may imply that the localization accuracy éases as more APs are used, as the variance of the
location estimation is proportional to the mean squareréMSE) of the estimated location. However, localization
using a large set of APs does not always guarantee an impeswtamaccuracy compared with that using a smaller
set of APs. This is because one or more APs in a large set mayhlide location estimate when the APs lead
to inaccurate distance estimation results. Therefore, ®@einio modify the CRB to use as a selection criterion for

an appropriate AP set by excluding the inaccurate distastimation results.

B. Batch beacon selection algorithm

Instead of using all the APs within a communication range tdrget node, we identify and exclude those APs
that may lead to inaccurate location estimations. In ordeshibose an appropriate set of APs, we propose to use

an average FIM, rather than the simple summation of FIMs JnTBe average FIM for a st of APs is obtained
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by averaging the FIMs of APs belonging t Based on the average FIM, we define a new b as follows:

I'(S) = trace <|—;| ZL) . (7)

i€s
Note that when more APs are addedSpI'(S) does not always decrease. InsteB(@$) may increase when the
added APs result in smaller FIM quantities than the averdlyeduantity of the APs already irb.

UsingT'(.S), we select set of APs that gives the smallé&$) from among all the possible AP sets with at least
three APs as follows:

S* = arg min T(9). (8)
{SISCN,|S|>3}

It is important to note that the computation of the FIM for AIRS(7) requires the location of the target node as
well as those of the APs. If a prior location of the target nazlavailable, it can be used as an initial guess to
evaluate the FIMs of APs. Otherwise, the location obtaingd4) whenS = A is used as an alternative. Because
the search space of the batch beacon selection algoriththpsssible sets containing at least three APs, it may
incur a rigorous computational overhead, and thus take aiderable time to select an appropriate AP set from
an ESS composed of a number of APs. ketlenote the number of APs within the communication range ef th

target node. The computational complexity($2"), because the number of sets)s. . (’;) which is equal to

(20 - mmt) 1),

C. Online beacon selection algorithm

For real-time mobile localization, we now devise a fast &t with lower computational complexity. The
computational complexity can be alleviated by reducingdbarch space of the batch beacon selection algorithm
in (8). Because the maximum speed of a mobile node is bouriidedew location cannot be especially different
from its previous location. In this case, we make the assiamphat the appropriate AP set remains unchanged, or
is only slightly changed. More specifically, we make assuomgstthat at mosk new APs that do not belong to the
previous appropriate AP set can be newly added to the cuamprbpriate AP set, and at most APs that belong
to the previous appropriate AP set can be subtracted foruhemt appropriate AP set. Under these assumptions,
the search space for selecting the appropriate AP set caighiicantly reduced. We define an extended AP set
as the union of the previous appropriate AP set and a set ofoat,k newly selected APs. Instead of using,
we can then restrict the search space to the APs in the exigkideset.

In order to determine the values bfandm, consider a situation in which a mobile node moves from locat
A to B over an area where a number of APs are uniformly deplpgsdshown in Figure 1. The solid and dashed
circles represent the communication ranges of the mobitkerwehen it is in locations A and B, respectively. In
such a situation, the APs located in area (c) are newly irdud the communication range of the mobile node.
Because these newly included APs can be added to the cuppramiate AP set, we set the value lofto the

number of APs in area (c).
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Fig. 1. \Variation of APs in the communication range of a melibde when it moves from location A to B.

On the other hand, in Figure 1, the APs located in area (b)xaki@ed from the communication range of the
mobile node, and these excluded APs can be subtracted frerprévious appropriate AP set. In Figure 1, it is
obvious that the size of area (c) is equal to that of area (bis Tay imply that the number of APs excluded
from the communication range of the mobile node is equal & ¢f newly included APs, i.emn = k. Therefore,
we can modify our assumptions as follows: at mbsiPs can be newly added and subtracted to form the current
appropriate AP set.

In order to estimate the number of APs in area (c), i.e., theevaf k&, we need to know the size of area (c) and
the density of the deployed APs. We first compute the size ed &a), because area (c) is obtained by subtracting
the size of intersection with area (a) from that of the dastiede. Letv,,,. andt¢ denote the maximum speed
of the mobile node and the time elapsed from the previoudikateon, respectively. We can then compute the

circle-circle intersection area (a) in Figure 1 as follows:

mazx * t 1
A= 2R12n Cosil (1)2T> - E’Umaz ' t\/4R72n - (vmam ' t)za (9)

where R,,, denotes the radius of the communication range. From thedfizzea (a), we can compute the size
of area (c) and then, once the density of the deployed APsvengive can estimate the average number of APs
located in area (c) as follows:

k=[(rR;, — A)-pl, (10)

wherep (number of APsh?) denotes the density of the APs in the localization area [ahdlenotes the ceiling
function. Based on (10), we seléchew APs that may contribute to improving the accuracy of tloation estimate.
Specifically, to achieve the smallest lower boungb) for the new appropriate AP set, we select theew APs
with the largest FIM quantities among the APs that did nobbglto the previous appropriate AP set. These are

computed as follows:

S, = arg max tracelz IZ-} , (12)
{S15C(5p)°, |S|=k} ies
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Algorithm 1 Localization using the online beacon selection algorithm
Input: previous appropriate AP sét,,

previous mobile node locatiofy.
Output: estimated mobile node locatidh
1: Updated
2: Sp = arg maxyg|sc(s,)c,|s|—=k} trace[>",c s L]
3 S, =51U8,
4: S* = arg mingg scg,; I'(9)
5: ét = LLS(Os*,aS*)

where(S,)¢ denotes the APs that did not belong to the previous apptephR setsS,,.

Using thek newly selected APs and those in the previous appropriateedPwe can generate candidate sets
for the new appropriate AP set. We define a bounded ARSget {S|S = S; US>} as a set of AP sets such that
S1 = {S|S C S,} denotes subsets of the newly selectedPs, andS; = {S|S C S,,|S| > |S,| — k} denotes
subsets of the previous appropriate AP set, from which at inds€’s have been excluded. More specifically, each
AP set in the bounded AP set is composed of the union of twerdifft AP subsets that originated fron and
S, respectively. From the bounded AP set, we select one AP iehvgives the smalledt(S) as follows:

S* = arg minT'(9). (12)
{S[SCSs}

Note that the computational complexity of the online beaselection algorithm i€ (2%*), because the number
of sets in the bounded AP set {stZO @) -Zﬁfi‘sﬂ_k ('Sf‘)}, which is equal to2?*. In comparison with the
batch beacon selection algorithm, which has a computdtmmraplexity of O(2™), the computational complexity
is considerably reduced. Further, to construct the bourdedet, we require the previous AP set from the previous
localization phase. If the previous AP set is not available,perform the batch beacon selection algorithm in (8),
and use the AP set selected by that algorithm as an initidsggue

Algorithm 1 describes the localization procedure for a nehbde using the online beacon selection algorithm.
At first, the mobile node measures the RSSs of beacon mestsagessitted from the APs, and converts the
measured RSSs to distances using (3). Next, the mobile reldetsk new APs as those with the largest FIM
guantities among the APs that do not belong to the previous&tPFrom the newly selected APs and the previous
AP set, the mobile node generates the bounded AP set andssetex AP set, which has smallest lower bound
result, as the appropriate AP set. Finally, the mobile ncgtenates its location by the LLS estimator using the

appropriate AP set.

IV. SIMULATION AND EXPERIMENT RESULTS

In this section, we discuss the results of simulations desigo evaluate the localization accuracy of the proposed

beacon selection algorithms by comparing them to otheristguselection algorithms. We consider a RSS-based

August 2, 2013 DRAFT



30% L 2 * 30

n
=]
N
o

distance (m)
L 4
[ 2
L 4
distance (m)
®
[ 2
[ 2

=
o

10

0 * * 0
0 10 20 30 0 10 20 30

distance (m) distance (m)

@ (b)

Fig. 2. Deployment of all available APs in a 30(m)x30(m) area

beacon selection algorithm, which selects a set of APs hakigh RSS values, and a random beacon selection
algorithm, which selects a random set of APs, as the heurdstiection algorithms. Furthermore, we consider a
mobile node whose movement follows a random waypoint modgtbl asmaximum speed df(m/s). For the wireless
channel environment, we set the path loss exponetat3.8. Moreover, we assume that the standard deviations of
the measured RSS data have different values, due to theediff®F characteristics between the mobile node and
the APs. Therefore, we randomly set the standard deviatidthén the given range. The measured RSS values are
periodically updated ever§.5 (s), and the LLS approach is used to estimate the locatiohefiobile node. In
our simulation resultsfRSS- K andRAND-K represent localization using the RSS-based beacon seledtiorithm
and the random beacon selection algorithm, which both séle@Ps. FurthermoreALL represents localization
using all the available AP®atch represents localization using the proposed batch beadectise algorithm, and

Online represents localization using the proposed online beaglecton algorithm.

A. Deployment of APs

In order to verify the robustness of the proposed beacorctighealgorithms to the deployment of APs, we
consider two different AP deployments, as shown in Figur@)?2 (b), and a random deployment of the nine APs
in a 30 (m) x 30 (m) area.

Figure 3 represents the median distance errors in estimmaddile node location with respect to the range of the
standard deviation of the measured RSS data when the APspleydd as shown in Figure 2 (a). In Figure 3,
we note that the RSS-based selection algorithm (R3$was a lower median distance error than both the random
based selection algorithm (RANBY and localization using all the possible APs (Total), beeathe accuracy
of the distance estimation from converting the measured B&3 is inversely proportional to the geographic
distance between the mobile node and the APs. This may inmgllylocalization using the RSS-based selection
algorithm is one method of improving the localization a@myt However, in comparison with the RSS-based
selection algorithm, our proposed beacon algorithms a&eh&25% reduction in median distance errors. This is
because the beacon messages with high RSS measuremetst mespbe affected by severe noise, thus not always

guaranteeing an accurate distance estimation. Moreovercam see that the online beacon selection algorithm

August 2, 2013 DRAFT



Al —— N
RSS-3

= RSS-4 o s
E 4rRAND-3 - 1
S RAND-4 ol
5 3 Online —— R
8 Batch —+— ) //x/
% %
k]
2
o
©
=}
Q
€

0 4 — . . . . .

0.5 1 15 2 2.5 3 3.5 4 4.5 5
range of standard deviation (dBm)
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Fig. 4. Median distance errors in estimated mobile clieoadmn with respect to the range of standard deviation of R®@8surements when
the APs are deployed as in Fig. 2 (b).

achieves similar median distance errors as the batch bestection algorithm. This means that the online beacon
selection algorithm can estimate the location of the mohdde without sacrificing accuracy.

We now consider the deployment of APs shown in Figure 2 (bjufe 4 shows that the proposed beacon
selection algorithms give a lower median distance erron ti@ other heuristic selection algorithms. The median
distance errors using the proposed beacon selection thigwriare 30% lower than those using the RSS-based
beacon selection algorithm. In addition, we consider a eamndleployment of APs ir80 (m) x 30 (m) area and,
as shown in Figure 5, the proposed beacon selection algwitigain achieve lower median distance errors than
the other selection algorithms. In comparison with the R&Sed beacon selection algorithm, the proposed beacon
selection algorithms achieve a 35% reduction in mediaradgst errors. We note that, in Figure 5, the median
distance error of RSS-3 is higher than that of RSS-4. Thisuis t the fact that, once we use three APs for
localization, an ill-conditioned matrix may occur in the &lestimator. This is used to estimate the mobile node

location, and thus we are liable to obtain inaccurate esiimaesults.
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Fig. 6. Median distance errors in estimated mobile cliesatimn with respect to the maximum speed of the mobile chemén the APs are
deployed as shown in Fig. 2 (b) and the range of standard td®viaf the measured RSS values is sebt@Bm).

From the simulation results, we can state that the proposeddn selection algorithms improve localization
accuracy compared with the other heuristic beacon sefectigorithms, regardless of the AP deployment. Fur-
thermore, although the computational complexity is adéxd by using a portion of the APs, the online beacon

selection algorithm is able to estimate the location of thabike node without sacrificing estimation accuracy.

B. Speed of mobile node

To confirm the applicability of the online beacon selectidgoathm with respect to the speed of the mobile
node, we conduct a simulation to study the median distarrcesawith respect to the maximum speed of the mobile
node when the APs are deployed as shown in Figure 2 (b). Sgalyifiwe simulate two different online beacon
selection algorithms, one of which uses a constant value @his is because the value bf which represents the
number of newly added or subtracted APs in the appropriats&Pis related to the bounded AP set and depends

on the speed of the mobile node.
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Fig. 7. Experiment setup in 6 by 7 m.

In Figure 6, we can see that when the valug:a$ set to 1, localization accuracy decreases with respeitteto
speed of the mobile node. This is because once the speed widhiée node is sufficiently fast, its current location
is far from its previous location, at which the online beasetection algorithm was last operated. In such a case,
the bounded AP set may be considerably different from theapjate AP set. On the other hand, the localization
accuracy using the proposed online beacon selection #igodoes not decrease with respect to the speed of the

mobile node, because the valuefofs determined properly with respect to the maximum mobildenspeed.

C. Experiment Results

We have implemented the proposed algorithms in Zigbee egsiselsensor network (WSN) nodes (CC2430)
manufactured by Crossbow. Each node is compatible with IBEE15.4 standard, and is capable of communicating
with each other and measuring RSS of received packets tiaedrby the others. The experiments were carried
in an outdoor environment on our campus where the groundvisred with grass. Figure 7 shows the experiment
configuration. Nine Zigbee nodes serving as a beacon wesgeldavithin a 6x7 m area, and client nodes were

located at ten different positions denoted by (1) to (10).

The experiment results are reported in Table |, where thentlocation represents the real location of the client
node and their unit is meter. The mean distance error for topgsed online beacon selection algorithm was
1.016 m, and those of the other two algorithms were about th.3During the experiments, we observed that RSS
measurements were significantly fluctuating over time, ameially some beacon nodes located far from the client
node frequently showed a large variation of RSS measurerieah in those cases, the proposed beacon selection
algorithm dynamically selected the appropriate set of AP€xcluding the outliers according to the CRB based

selection criterion, and successfully improved locai@aperformance.
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TABLE |
EXPERIMENT RESULTS

Client location Online All RSS-3

X y X y error X y error X y error

ID

1 175 0.5 2941 1602 1623 3.216 2.054 2136 2.843 2.3261282
2 175 2.0 2.896 2.233 1169 3.299 2110 1553 2.967 2.2922511
3 175 35 1805 2824 0.678 2350 3.082 0.731 1.711 2.589120
4 175 5.0 2196 4970 0447 2725 4556 1.071 2177 4.98%4270
() 175 6.5 2.738 5.064 1743 3360 4.711 2407 2.967 4.8610412
(6) 4.25 0.5 4134 1.745 1.251 4163 1962 1464 4.215 2.3258251
(7) 4.25 2.0 4917 2908 1.127 4.234 3.012 1012 4.917 2.9081271
(8 4.25 35 5.042 3.289 0.820 4.583 3.201 0.448 4.934 2.9119030
9 4.25 5.0 4296 4725 0.279 4.130 4.216 0.793 4.008 4.1748610
(10) 4.25 6.5 4318 5479 1.023 3.944 5.026 1505 4.234 4.893607

Avg. distance error 1.016 1.312 1.308

V. CONCLUSION

In this paper, we proposed the beacon selection algoritioma RSS-based localization system. Based on the
CRB computed by the inverse of the average FIM, we proposeatchlbeacon selection algorithm, which selects
the appropriate AP set as that with the minimum lower boursdiltefrom among all the AP sets available for
localization. Furthermore, we devised an online beacoecsieh algorithm to implement real-time mobile node
localization by alleviating the computational complexitythe batch beacon selection algorithm. The simulation and
experiment results verified that the accuracy of clientligation using the proposed beacon selection algorithms

increased, as they achieved lower median distance errmddlalization using other heuristic selection algorishm
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