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Abstract 
Monitoring reverse osmosis (RO) membrane conditions is an important task because it helps 
reduce the operation and maintenance (O&M) cost in the RO membrane desalination system by 
achieving long membrane lifetime and energy saving. Because biological interactions between the 
membrane itself and microorganism cause the rapid degradation of membrane performance, it is 
crucial to identify and quantify potential biofoulants that are sensitive to each specific RO 
membrane. This study proposed a biofouling prediction method that indirectly quantifies the 
degree of biofouling by comparing the fluorescence excitation-emission matrix (EEM) of foulants 
sampled on the fully fouled RO membrane and those of brine samples from currently operating 
RO system. The experiment showed that the similarity distance measure from the comparison 
between the two fluorescence EEMs tends to increase when the brine sample were secured from 
relatively clean RO membranes.  
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INTRODUCTION 
Reverse osmosis (RO) desalination plants have nowadays played a significant role in water supply 
not only to compensate the water shortage caused by environmental contamination, but also to meet 
the fresh water demand arising from a growing population. Even though RO membrane system is 
recognized as one of the leading desalination technologies, it has some economical issues to be 
resolved such as low energy efficiency and membrane replacement costs. 
 
Membrane biofouling, which occasionally occurs as time elapses due to the developed biofilms, has 
been considered as a significant problem that affects the overall RO system performance because it 
causes a drop of permeate flux, which requires more energy to generate more pressure for keeping 
the same flux of potable water, and shortens the membrane lifetime leading to an increment of the 
replacement cost of RO membranes. Timely membrane treatments such as chemical cleaning can 
prevent an abrupt performance degradation of RO membranes and effectively defer the membrane 
replacement due to fouling, scaling and degradation, resulting in the operation and maintenance 
(O&M) cost reduction of RO systems [1]. To perform cost-effective membrane treatments, the 
development of a fouling index that represents the degree of membrane fouling is crucial. 
Conventionally, membrane autopsy was performed for investigation of the characteristics of 
foulants on membrane; however, it is an expensive method because damage of the membrane is 
inevitable for the examination [2]. Instead, several indirect fouling prediction methods such as Silt 
Density Index (SDI), Modified Fouling Index (MFI), Ultrasonic Time-domain Reflectometry 
(UTDR), and Membrane Fouling Simulator (MFS) were developed as an alternative to the direct 
and destructive method. SDI, which is the most commonly used method of the indirect and non-
destructive measurements of membrane fouling, is used as an indicator representing the amount of 
particles related to the membrane fouling. It is based on the ratio of the time it takes for 500ml feed 
water to flow through a membrane filter with a pore size of 0.45μm and 47mm in diameter at a 



Fig. 1. Schematic of desalination system using an RO membrane (1- raw seawater storage tank; 2-
feed pump; 3-multimedia filter; 4-1st&2nd micro filter; 5-high pressure pump; 6-RO membrane 
module; 7-brine; 8-permeate). The circles indicate the sampling point of water samples: R-raw 
seawater; F-feed water for RO membrane; P-permeate, and B-brine. 
 
certain pressure to the time it takes for the same amount of feed water to flow through the same 
filter after 15 minutes. However, it has been reported that SDI is not suitable for the fouling 
indicator of RO membranes with a smaller pore size than 0.45μm because it does not consider the 
particulate matter less than 0.45μm [3]. MFI has been thought to be an upgraded version of SDI. 
However, because it uses the same membrane filter as that of SDI, it has the same problem in 
representing the degree of membrane fouling [4]. UTDR monitors the development and growth of 
fouling layer in real-time by exploiting the amplitudes and arrival time differences of the ultrasonic 
waves reflected from the membrane surface and the layer of foulants on the membrane [5]. MFS is 
a miniaturized testing device made of the same material as spiral-wound RO membranes, which 
allows detecting the pressure drop, observing the membrane surface through the window, and  
analyzing the coupons of the MFS membrane [6]. Since these previous approaches try to evaluate 
the fouling potential capacity of the feed water before passing the RO membrane, it is hard to 
estimate the fouling state of RO membrane itself. 
 
Membrane foulants can be classified as inorganic compounds, colloidal or particulate matter, 
dissolved organics, chemical reactants, and microorganisms. Biofouling caused by microorganism 
is thought to be the major problem because all other foulants can usually be removed by 
pretreatment steps, and it only requires a few colonies to be present to develop into a biofilm. 
Furthermore, microorganisms are ubiquitous in most water systems and tend to adhere to surfaces 
and multiply on any surface in contact with the water treatment system. Once attached to the 
membrane surface, microorganisms can then grow and rapidly increase the amount of extracellular 
polymeric substances (EPS; polysaccharides together with proteins and compounds such as DNA-
derivatives) in order to survive and form a mature biofilm [7]. These EPS compounds are high-
molecular weight complexes, and include carbohydrates, proteins, nucleic acids, lipids, and other 
polymeric compounds that can be secreted by microorganisms into their aggregates [8]. It has also 
been reported that the proteins and humic-like substances of these compounds generate fluorescence 
signals because they contain a large aromatic structure with functional groups [9]. This fluorescence, 
emission spectra when molecules re-emit absorbed light at a different wavelength, can be measured 
via fluorescence spectroscopy. In previous studies, fluorescence spectroscopy has been shown to be 
very sensitive and hence has been widely used to identify the structure and type of dissolved 
organic matter (DOM) in fields such as marine and fresh water environments [10]. Indeed, a great 
deal of research has been conducted in attempts to classify and characterize the DOM type using a 
fluorescence excitation emission matrix (EEM), in which regions respond to different types of 
DOM functional groups. As time passed, the RO membrane is covered with foulants that might 
detach from or attach to the RO membrane; therefore, the fluorescence EEM changes in the brine 
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Fig. 2. Procedure of the proposed algorithm (R: fluorescence EEM of fouled membrane, C1 and C2: 
synthetic fluorescence EEM generated from R, T: fluorescence EEM of brine sample to be 
evaluated, X


: eigenvectors extracted from synthetic fluorescence EEMs). 

 
are closely related to foulants directly affecting the RO membrane. For this reason, we propose an 
on-line and non-intrusive method to predict the condition of RO membranes by comparing the 
fluorescence EEM of brine and that of foulants sampled on fouled RO membranes. This method 
takes the fluorescence EEM of sampled foulants as a reference since fluorescence EEM of foulants 
on RO membrane directly shows the affected materials on the membrane, and quantifies the 
similarity change between the reference and the fluorescence EEM of brine sampled during RO 
operation. 
 
 
MATERIALS 
 
Samples collection and treatment 
The water samples were collected from a local plant using an RO membrane system plant located 
close to the Yellow Sea in South Korea. In this system, raw seawater was treated using a three- 
stage filtration process: 1) a multimedia filter, 2) an microfiltration (MF) membrane filter, and 3) an 
RO membrane module. Samples were collected the following stages: raw seawater (R) in the 
storage tank, feed water of the RO membrane (F) that was treated by multilayer and MF membrane 
filtration, permeate (P) that passes through the RO membrane, and finally the brine (B), which is 
concentrated; a schematic of the system is shown in Fig. 1. The water samples were stored in 
sampling bottles at 4℃ and measured within 3 days after sampling; the pH of the water samples 
was not adjusted. 
 
The specifications of RO membrane were a polyamide thin-film composite, 8.0 inch (203 mm) in 
size. The RO membrane was replaced due to a decline in membrane performance. At that time, the 
feed side of the fouled RO membrane was collected because it was seriously fouled. To obtain 
small fractions, the fouled RO membrane was cut into pieces; 10 fragments (1 cm1 cm) were 
extracted at a clean-bench and then immersed in 20 mL deionized water. These fragments were 
treated with ultrasound pulses for 1 min periods, which was repeated 10 times to avoid generating 
heat. To detach the remaining foulants from the membrane fragments, the treated fragments were 
rinsed with 30 mL deionized water.  
 
Fluorescence analysis 
The water samples and treated fouled RO membrane were analyzed by a fluorescence 



spectrophotometer (F-2500 FL spectrophotometer, Hitachi High-Technologies Corporation, Japan) 
at room temperature (~22℃). The fluorescence EEM data of the samples were then modelled at an 
excitation wavelength ranging from 220 to 490 nm and emission wavelength from 220 to 490 nm, 
with 10 nm sampling intervals. The excitation and emission slits were maintained at 5 nm and the 
scanning speed was set at 3000 nm/min. The voltage of the photomultiplier tube (PMT) was 700 V. 
During the fluorescence analyses, the Raman scattering peak intensity recorded for deionized water 
at Ex/Em=348/397 nm was examined in order to confirm there were no significant fluctuations in 
the performance of the spectrophotometer lamp or other hardware; deionized water was used as the 
blank sample.  
 
Fluorescence data pretreatment and determination of membrane fouling indicator 
Obtained fluorescence EEM was pretreated for investigation of Rayleigh and Raman light scattering 
regions using MATLAB 7.9.0 with EEMcut [11]. First, the fluorescence EEM of feed water is 
subtracted from that of brine in order to exclude the feed-specific effects. In other words, we can 
eliminate the feed-specific characteristics through the relative differences between the fluorescence 
EEM of feed water and brine.  
 
 
PROPOSED ALGORITHM 
We propose a principal component analysis (PCA) based method that quantitatively shows how 
much the fluorescence EEM of brine is correlated to that of fouled membrane in order to indirectly 
predict the degree of fouling developed in the RO membranes. The PCA is a very powerful 
technique to extract a set of characteristic features from a large data by dimension reduction [12]. 
Our method aims to quantify the similarity change of the fluorescence EEM of brine samples from 
the reference fluorescence EEM of fouled membrane over time. We generate a set of multiple 
synthetic data from the reference fluorescence EEM and use it for the training process of PCA 
technique. The synthetic data (C1 and C2 data in Fig. 2) are generated by selecting peak points in the 
fluorescence EEM data and applying the Gaussian filter to the original data (R in Fig. 2) at each 
selected peak point. Note that peaks of fluorescence EEM in a wavelength range indicate the 
existence of particular substances that can cause the biofouling of RO membrane [13]. Therefore, 
each synthetic data can be considered as an emphasized variation of the reference fluorescence 
EEM data for the corresponding fouling substances. The eigenvectors can be obtained in the same 
manner as done in conventional approaches. Then, the feature vector for a fluorescence EEM data is 
obtained by projecting the data onto the eigenvectors. The similarity between the fluorescence EEM 
of the reference and a brine sample is finally computed by calculating the Euclidean distance 
between two corresponding feature vectors. 
 
Algorithm 1 Generating the multiple synthetic data
Require: A two-dimensional MM   matrix R of intensity value. θd indicates the minimum 
distance. N is the number of peak points to be selected. κ means covariance 
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an 1N  column vector for representation of the x- and y- coordinate of the selected peak point, 
respectively. Gi is the MM   Gaussian distribution matrix with the mean of [xi, yi] and the 
covariance κ. Ci is the MM  matrix generated by element-by-element multiplication of Gi and R. 
1: [x, y]FindPeak(R, θd, N); 
2: for i=1 to N do 
3:   Gi GaussianDistribution([xi, yi], κ); 
4:   Ci = Gi .  R; 
5: end for 
 



Algorithm 2 Computing the eigenvectors 
Require: MM  synthetic data Ci for i = 1, …, N. SVD(∙) is the singular value decomposition 
function. k is the number of the chosen column vectors of V. 
1: for i=1 to N do 
2:   ii Cs  vectorized ;   
3: end for 
4: s  NN

i 1 is ; 
5: for i=1 to N do 
6:   ssii  ; 

7: end for 

8:   NN
i

T
  1 ii  ; 

9: [U,S,V] SVD( ); 
10: Store the first k columns of V.  
 
Algorithm 3 Computing the Euclidean distance
Require: k columns of V. 12 M  vectorized reference r and test data t. vi denotes the i-th column 
vector of V. ED(∙,∙) symbolizes the function for measuring the Euclidean distance.  
1: for i=1 to k do 
2:   ivsr  )(ui ; 

3:   ivst  )(wi ; 

4: end for 
5: distance ←ED(u,w); 
 
Generating the multiple synthetic data 
Let R denote the fluorescence EEM of the foulants on fully fouled RO membrane, which is a two-
dimensional MM  matrix. From the reference R, we generate N synthetic data (i.e., Ci for i = 1,…, 
N). In order to make each synthetic data Ci represent excitation-emission pair of the i-th dominant 
foulants, we first select the i-th largest peak points and apply the Gaussian filter, which can filter 
out all the measurement data except the points near the selected peak point. During the peak 
selection procedure, it is very important to mitigate the effect of local minima due to measurement 
noises of fluorescence EEMs. The selected peak points need to be away from each other by more 
than a minimum distance θd. Staring from the largest peak, we select N peak points. If the i-th peak 
point candidate is within θd from the j-th peaks with j<i, we ignore the peak point candidate and 
select the next largest one as the candidate point. It can prevent insignificant peaks that are close to 
each other from being selected. Then, Ci is obtained by applying multivariate Gaussian distribution 
centered at the i-th peak point to R. Each multivariate Gaussian distribution has the mean of the 
corresponding peak point and the covariance of 
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Algorithm 1. 
 
Extracting the eigenvectors from the training set 
 In order to obtain the principal components of R, we apply PCA to the synthetic data set. First, we 
convert Ci into si in an 12 M  vector format, which serves as a training set of PCA. Then,  si is 
centerized by extracting the average of the training set in order to remove a positional bias of the 
training set as follows: ssii   where NN

i  1 iss . The covariance matrix NN
i

T  1    is 

obtained to capture the variation among the training set. By using singular value decomposition 
(SVD), the eigenvectors of the training set are obtained. The eigenvectors are the principal 
components that can efficiently represent the training data set. In order to exclude a trivial variation  



of the training set, we select the most significant k 
eigenvectors, which are denoted by vi for i = 1, …, k. A 
symbolic description is provided in Algorithm 2. 
 
Calculating the Euclidean distance using feature vectors 
Given the eigenvectors of the training data set, we obtain the 
feature vector of fluorescence EEM data set by projecting the 
data set onto the eigenvectors. The vectorization of 
fluorescence EEMs of the reference R and the test data T are 
centered and projected into u and t, respectively, as follows: 

 k21 uuuu  

 k21 wwww , 

where  

ivsr  )(ui  

ivst  )(wi , 

where r and t are the vectorization of R and T, respectively. 
The similarity distance between u and t is obtained by 
calculating the Euclidean distance of each feature vector as 
shown in Algorithm 3. 
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RESULTS  
In order to evaluate our proposed algorithm, we prepared a 
reference fluorescence EEM data of foulants on fully fouled 
RO membrane and performed the pre-processing, which is 
explained in detail in the previous section of MATERIALS. 
The reference fluorescence EEM has the vector with a 
dimension of 784 as shown in Fig. 3(a). We selected 8 peak 
points from the reference data and generated the 
corresponding synthetic reference data for the training set. 
Those generated data Ci and the corresponding vector si are 
depicted in Fig. 3(b). After performing a PCA on the training 
set, we chose the eigenvectors corresponding to the first five 
largest eigenvalues that account for almost 100% of the total 
variance of 784 eigenvalues. Fig. 4 shows the fluorescence 
EEM data of brine sampled at a different time from RO 
membrane, which correspond to different fouling conditions 
i.e., fully fouled state, clean state after membrane replacement, 
after a 2-month operation, and after chemical treatment, as 
well as the fluorescence EEM of the foulants on fully fouled 
RO membrane. Once those data were projected onto the 
selected five eigenvectors, each data can be represented as a 
set of five features. Table 1 shows the features of the 
corresponding fluorescence EEM spectra in Fig. 4. The 
Euclidean distance between the feature vector of brine sample 
and that of foulants is shown in Fig. 5. We observed that the  
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Fig. 3. (a) Fluorescence EEM of 
the foulants on the fouled RO 
membrane and its vectorization. 
(b) 8 synthetic fluorescence EEMs 
generated from (a) and those 
vectorizations. 



Fig. 4. Fluorescence EEM spectra of brine sampled at (a) fully fouled RO membrane, (b) clean state 
after membrane replacement, (c) intermediate state after a 2-month operation, (d) refreshed state 
after chemical cleaning, and (e) fluorescence EEM of foulants sampled from (a). 
  
Table 1. The first 5 features of each fluorescence EEM spectra 

 (a) (b) (c) (d) (e)
PC1 326.39 356.93 373.11 304.84 -45.34 
PC2 35.20 -35.33 -1.22 -106.75 182.98 
PC3 29.38 13.14 38.39 22.01 -164.24 
PC4 -96.47 -93.88 -74.78 -113.75 25.35 
PC5 32.43 61.06 29.19 129.29 -111.71 

 
fluorescence EEM of brine sampled from (a) had the smallest value when comparing with (e). It 
implies that they are closely correlated with each other. The distance for (b) and (e) apparently 
increased due to the membrane replacement. After the time elapse, the difference between the 
fluorescence EEM of (e) and (c) decreased as the membrane was being contaminated. When the 
chemical treatment was performed, the distance between (e) and (d) increased again. This indicates 
that the membrane at (d) became considerably clearer than (c). 
 
Brief description of the application 
The software implementing the proposed algorithm was developed with Java programming 
language of JDK 1.7.0. The Fig. 6 shows a snapshot of graphic user interface (GUI). We provide a 
brief explanation for the GUI of the developed software as follows: The part (a) includes the 
controls for creating a new project or opening an existing project of a certain membrane module. In  
(b), there are three buttons for loading the fluorescence EEMs of foulants taken from the RO 
membrane, brine, and feed water, respectively. As the data set are stored in an MS Excel file format, 
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Fig. 5. Euclidean distance between the feature vector of foulants on RO membrane and that of brine 
samples obtained from different fouling conditions in Table 1. 
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Fig. 6. Software of monitoring the degree of membrane fouling developed in RO membrane using 
JDK 1.7.0. 
 
we implemented the data I/O functions with JExcelApi or a JAVA library. The part (c) enables us to 
calculate the distance by applying the proposed algorithm to the loaded data, and then to save the 
similarity distance results in a XML format. Note that XML is a well-designed and standardized 
textual format for structured documents to be readable over the Internet, and has been used in a 
wide variety of applications thanks to its simplicity, generality and usability. The part (d) shows the 
overall information about the current project. The parts (e) and (f) illustrate 3-dimensional plot for 
fluorescence EEM spectra of the reference and brine sample and a trend of variation in distance, 
respectively.  
 
 
CONCLUSION 
In this study, the novel method to evaluate the degree of biofouling of currently operating RO 
membrane was developed. Unlike several previous indirect and non-destructive methods that 
measure fouling potential based on feed water, this proposed method can predict the membrane 
condition based not only on feed water and brine samples, but also on foulants on fouled RO 
membrane. Experimental results support our hypothesis that the far distance appears in the case of 
comparing with the brine sampled from the relatively clean RO membrane. This approach can be 
used for assessment of the cleaning performance and extended to other applications related to the 
membrane biofouling as well.  
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