
1

Distributed Localization for Anisotropic Sensor

Networks

Hyuk Lim and Jennifer C. Hou

Abstract

In this paper, we consider the issue of localization in anisotropic sensor networks. Anisotropic

networks are differentiated from isotropic networks in that they possess properties that vary according

to the direction of measurement. Anisotropic characteristics result from various factors such as the

geographic shape of the region (non-convex region), the different node densities, the irregular radio

patterns, and the anisotropic terrain conditions. In orderto characterize anisotropic features, we devise a

linear mapping method that transforms proximity measurements between sensor nodes into a geographic

distance embedding space by using the truncated singular value decomposition-based (TSVD-based)

pseudo-inverse technique. This transformation retains asmuch topological information as possible and

reduces the effect of measurement noises on the estimates ofgeographic distances. We show via

simulation that the proposed localization method outperforms DV-hop, DV-distance, and MDS-map,

and makes robust and accurate estimates of sensor locationsin both isotropic and anisotropic sensor

networks.
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I. INTRODUCTION

Driven by advances in MEMS micro-sensors, wireless networking, and embedded processing,

ad-hoc networks of devices and sensors with (limited) sensing and wireless communication

capabilities are becoming increasingly available for commercial and military applications such

as environmental monitoring (e.g., traffic, habitat, security), industrial sensing and diagnostics

(e.g., factory, appliances), critical infrastructure protection (e.g., power grids, water distribution,

waste disposal), and situational awareness for battlefieldapplications. For these purposes, each

sensor node collaborates with others in sensing, monitoring, and tracking events of interests

by exchanging acquired data, usually stamped with the time and position information. If the

data sent by a sensor node carries incorrect position information, it could be useless or even

harmful. As such, localization — how each sensor node obtains its accurate position, even in the

presence of different geographic shapes of the monitoring region (non-convex region), different

node densities, irregular radio patterns, and anisotropicterrain conditions — has become an

important and critical issue in deploying wireless sensor networks.

Localization for wireless sensor networks has been intensively studied in recent years. A simple

approach of having all the sensor nodes equipped with a global positioning system (GPS) does

not suffice because of the size, cost, and power consumption constraints of sensor nodes. Instead,

most localization methods determine the positions ofunknownsensor nodes under the assumption

that a small portion of sensor nodes, calledbeacon nodes, are aware of their positions by means of

manual configuration or GPS [1]-[12]. In these methods, eachsensor node estimates (based either

ranging techniques or proximity measurements) its distances to beacon nodes, and calculates its

position by triangulation/lateration techniques. Refinement can be made to iteratively improve

the accuracy of these localization methods, by, for example, gradually adjusting the node position

so as to minimize the discrepancy between the calculated Euclidean distances and the measured

distances to its neighboring nodes [5], [6].

One underlying assumption used in most localization methods is that the network topology

is isotropic, i.e., the properties of proximity measurements are identical inall directions. Un-

fortunately, this assumption often does not hold in practice, due to the geographic shape of the

region (non-convex region), the different node densities,the irregular radio patterns, and the

anisotropic terrain conditions. As a result, their performance degrades severely in anisotropic
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sensor networks. For example, in one of the pioneering methods, APS [3], each beacon node

computes the average distance per hop by dividing the sum of distances to the other beacon nodes

by the sum of hop-counts, without taking into account of the fact that the per-hop distance may

be different in different directions, due to terrains, obstacles, and/or other effects. A sensor node

that does not know its location estimates its distance to a beacon node, by multiplying the

average per-hop-distance of the beacon node by the hop-count to the beacon node (measured by

the sensor node).

Recently, several methods have been proposed for anisotropic networks, among which the

multidimensional scaling (MDS) based methods [11], [12] may have received the most attention.

By assuming that the network is locally isotropic in small regions, they establish local maps

based on the MDS technique in small regions, and merge local maps into a global map covering

the entire sensor network area. Although these “divide and conquer” methods further improves

the accuracy of localization under certain cases, their performances are quite susceptible to the

choice of the size of small regions. As a matter of fact, this parameter depends greatly on the

terrain conditions and other factors that affect the isotropy of the network.

In this paper, we present a new technique to analyze the relationship between the geographic

distance and the proximity between sensor nodes in anisotropic networks. Conceptually, localiza-

tion can be considered as an embedding problem that maps the set of objects into an embedding

space. In Lipschitz embeddings, a coordinate space is defined such that each axis corresponds to

a reference setof objects, and the coordinate values of an objecto are the distances fromo to the

reference objects [13], [14], [15]. Based on this concept, each sensor node has two coordinates

in Lipschitz embedding spaces that correspond, respectively, to the proximity measure and the

Euclidean distance between itself and beacon nodes.

We derive an optimal linear transformation that projects one embedding space (that is built

upon proximity measures) into the geographic distance space by using the singular value de-

composition (SVD) technique. The(i, j)th element of the transformation matrix represents

the effect of proximity to thejth beacon node on the geographic distance to theith beacon

node. The distance to a beacon node is computed by a weighted sum of proximities to all

the beacon nodes inall directions. Moreover, by introducing a truncation method to SVD, the

proposed method reduces the effect of noise in the transformation process, while keeping as

much topological information as possible. Finally, we showvia simulation that as compared to
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MDS-based localization methods, the proposed localization method makes robust and accurate

estimates of node locations in both isotropic and anisotropic sensor networks.

The rest of the paper is organized as follows: In Section II, we provide preliminary material

and formulate the localization problem. In Section III, we give a summary of related work in the

literature. In Section IV-V, we first introduce optimal linear transformation from the proximity

space into the geographic distance space, and then elaborate on system implementation issues.

Following that, we present in Section VI experimental results, and conclude the paper in Section

VII.

II. BACKGROUND

Localization Problem: The localization problem we consider is as follows: Given the

proximity measuresto beacon nodes, determine the unknown locations of sensor nodes, where

the proximity between two nodes is defined as a quantitative measure that reflects the geographic

distance. For example, in range-free sensor networks, network characteristics such as the number

of hops are adequate candidates as the proximity measure.

Consider a sensor networkS with M beacon nodes andN (non-beacon) nodes with unknown

positions. (For notational convenience, we term the nodes with unknown positions asunknown

nodes.) The locations of beacon nodes and unknown nodes are denoted asxi ∈ Rd in d-

dimensional space fori = {1, · · · , M} and i = {M + 1, · · · , M + N}, respectively. The

geographic distance between two nodes,xi andxj is then defined by the Euclidean distance:

dij = fd(xi,xj) :=

√

√

√

√

d
∑

k=1

(xik − xjk)2, (1)

wherexik and xjk are thekth coordinates ofxi and xj, respectively. Letpij be the proximity

measure between theith node and thejth node. Then the localization problem can be formally

stated as

Given: xi, pij , andpsi for i, j ∈ {1, · · · , M},

Estimate:xs for a sensor nodes.

Namely, under the assumption that the locationsxi of the beacon nodes are known, the problem

is to estimate, with the use of the proximitiespij andpsi for i, j ∈ {1, · · · , M}, the geographic

positionxs of the sensor nodes.
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Definition of Isotropy : For a sensor networkS, we assume that there exists a certain

mapping function,fp : R2d −→ R, that describes the mapping from the geographic locations

(xi andxj) to the measured proximitypij for each pair of sensor nodes, where the proximity

is written aspij = fp(xi,xj). If the mappingfp(xi,xj) is a function of the Euclidean distance

betweenxi and xj , the sensor network is said to beisotropic, i.e. pij = fp(xi,xj) = gp(dij),

∀ i, j ∈ {1, . . . , M + N} andgp : R −→ R.

In practice, the proximities measured by a sensor node to theothers often differ in different

directions. This implies that the proximity between a pair of sensor nodes depends greatly on the

distinct locations of these sensor nodes, and the sensor network is anisotropic. For instance, if

the proximity is defined by the minimum hop-count obtained byflooding probing packets, and if

sensor nodes are scattered in a non-convex region, the path between a pair of sensor nodes may

not be a straight line and detours around the region. This results in a larger proximity between

the sensor nodes than that in a convex region. Similarly, in aweakly connected sensor network,

the geographic distance may be shorter than the product of the hop-count and the transmission

range, as intermediate nodes may not exist on the straight line between the two nodes. That is,

a loosely populated sensor network is likely anisotropic.

Figure 1 gives several examples of isotropic/anisotropic sensor networks. (We will use these

networks both for the subsequent discussion and for the simulation study.) Figure 1 (a) gives an

isotropic sensor network, where 250 sensor nodes (each witha radio range ofr) are uniformly

distributed within a square area. For notational convenience, we normalize the distance with

the radio ranger, i.e., the distance is measured in units ofu = r. The square area is of size

10u × 10u. Figure 1 (b) and (c) give two possible anisotropic sensor networks. In Fig. 1 (b),

sensor nodes enclose a circular obstacle in the right half plane, and an anisotropic network results

because of geographic structures. In this case, even thoughthe geographic distances of two pairs

of nodes are the same, their proximities can be quite different. In Fig. 1 (c), sensor nodes in the

left half plane have a radio range ofr1 = u, whereas those in the right half plane have a radio

range ofr2 = 1.3u. An anisotropic network results because of different radioranges (due to,

for example, terrain and foliage effects). This differencealso makes the ratio of the geographic

distance to the hop-count different in different regions.

In anisotropic sensor networks, in order to obtain accuratelocalization results, it is necessary

to compensate for the anisotropic properties by gathering and utilizing information on the
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(a) TopologyA: Isotropic network
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(c) TopologyC: Anisotropic network

due to different radio ranges

Fig. 1. Sensor network topologies used in the simulation study.

relationship between the geographic distances and the measured proximities in as many directions

as possible.

III. RELATED WORK

A. Generic Approaches

Bulusu et al. [1] attempted to reduce the use of GPS by placing multiple nodes (beacon

nodes) with overlapping coverage regions at known locations. The authors proposed a simple

localization method that determines the location of a sensor node as the centroid of the locations

of its neighboring beacon nodes. Dohertyet al. [2] formulated the localization problem as a
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convex optimization problem with proximity constraints imposed by known connections. The

problem was then solved in a centralized manner.

Niculescuet al. [3] proposed a distributed positioning algorithm, calledad-hoc positioning

system(APS), in which three different propagation methods were investigated, i.e.,DV-hop,

DV-distance, and Euclideanschemes. The DV-hop scheme employs distance vector exchange.

Each node exchanges distance tables that contain the locations of, and the hop-counts to, beacon

nodes with its neighboring nodes. Once a beacon node obtainsthese distance tables from other

beacon nodes, it estimates an average distance per hop, and exploits it to estimate the geographic

distance from each unknown node to the beacon node. The unknown node estimates its location

by performing lateration, i.e., a simplified version of the GPS triangulation. The DV-distance

scheme employs the geographic distance measured with the use of radio signals, rather than

hop-counts. Finally the Euclidean scheme relies on the geometry of neighboring sensor nodes

to estimate the geographic location.

Savvideset al. proposed an iterative multilateration method in [4] and itsimproved version

with the Kalman filter based position refinement process in [6]. Each node simply calculates

an initial estimate of its location based on geometric constraints, and updates the estimate by

the iterative multilateration. Savareseet al. [5] proposed an algorithm split into two pahses:

the start-up phase and therefinementphase. An initial position of a node is obtained in the

start-up phase and is gradually adjusted in the refinement phase by using the measured ranges

between its neighboring nodes. Nagpalet al. [7] proposed a coordinate formation algorithm that

consists of a gradient descent method for estimating the distances to neighboring nodes and a

multilateration method for estimating the locations. Thisalgorithm achieves estimate accuracy

within 20% of the radio range in a reasonable simulation environment. Heet. al [8] proposed a

simple, area-based localization technique that does not require expensive lateration algorithms.

Each node chooses three beacon nodes from all neighboring beacon nodes, forms the triangles

by connecting these three beacon nodes, and calculates the center of the intersection of all the

triangles to determine its position.

Most of the proposed positioning algorithms including [1]-[8] work well in isotropic sensor

networks. However, their performance severely degrades inanisotropic networks as a result of

not taking into account of the anisotropic properties.
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B. Multidimensional Scaling (MDS) Based Approaches

Several novel methods using multidimensional scaling (MDS) were recently proposed for

localization in sensor networks [9], [10], [11], [12]. Multidimensional scaling is a data analysis

technique used to visualize proximity of a set of objects in alow dimensional space. LetP be a

proximity matrix, whoseijth element is the proximity measured between theith andjth sensor

nodes. The squared matrixPPT is shifted to the center of the matrixP, and is decomposed

by similarity transformation. Then, by selecting the eigenvectors associated the firstm largest

eigenvalues, these localization methods obtain anm dimensional space representation (m is

usually 2-3), called arelative map. Locations in the relative map are relative to each other, and

hence have to be rotated, shifted, and reflected in order to coincide with the geographic locations

of sensor nodes.

Raykaret al. [9] formulated a localization problem for sound sensors andactuators as a non-

linear least square minimization problem. The authors suggested to use the coordinates obtained

by MDS as the initial guess to mitigate the local minima problem.

Shanget al. [10] proposed a MDS-based localization method, calledMDS-map, that works well

with connectivity information. However,MDS-maprequires availability of global connectivity

information for all the sensor nodes (in order to calculate the similarity transformation), and

is a centralized method with complexity O(n3), wheren is the total number of sensor nodes.

Moreover,MDS-mapdoes not seem to outperform the previous methods, when the number of

beacon nodes are large.

To eliminate the need for global connectivity information and centralized computation, Shang

et al. [11] proposed an improved version ofMDS-map, calledMDS-map (P). Each node performs

MDS with the connectivity information to its neighbor nodesand obtains a local (relative) map.

These local maps are then merged together to form a global (relative) map. The global map has

to be aligned, by a linear transformation, in order to construct a geographic (absolute) map.

Ji and Zha [12] proposed to use thescaling by majorizing a complicated function(SMACOF)

to obtain weighted MDS iteratively, when a portion of the pairwise proximity information is not

available. The relative maps are calculated in small groupsof sensor nodes and are merged in

a distributed fashion. The authors proposed an incrementaland distributed method to align the

relative map to the geographic map.
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Although the MDS-map method [10] leverages global connectivity information, it does not

give better performance in anisotropic sensor networks than the latter two methods [11], [12]

that establish small local maps and merge them to construct aglobal map. This is because MDS

used in aforementioned approaches leave out significant information by using two (or three)

eigenvectors of then eigenvectors obtained from the similarity transformation. This implies

that two (or three) dimensions are not sufficient to catch theanisotropic properties. Namely,

the two (or three) eigenvectors selected in the MDS process retain only two (or three) principal

components of the proximity information, and other significant information including anisotropic

network properties are essentially left out. The latter twomethods [11], [12], on the other hand,

divide an anisotropic sensor network into a number of small regions, each of which is considered

to be locally isotropic. Relative, local maps are then established, and merged into a global map.

As a result, the anisotropic characteristics can be better retained in the global map. The downside

of these two approaches is, however, the performance is quite susceptible to the choice of an

appropriate region size and the origin of the global map. Theperformance is also affected by

error propagation during the merging process.

C. Our Proposed Method

Our proposed method bears the similarity with the MDS-basedmethods in that it uses the

singular value decomposition (SVD) technique to analyze the proximity matrix. However, it

differs in several fundamental aspects:

• Accurate characterization: We employ SVD to analyze the relationship between the

geographic distances and the proximities, with the objective of retaining as much anisotropic

characteristics as possible.

• Less computational complexity: In the proposed method, SVD is applied to the proximity

matrix only between beacon nodes, but not all the nodes. Although SVD has computa-

tional complexity of O(n3), the parametern refers to the number of beacon nodes. An

unknown sensor node simply computes its geographic distance to beacon nodes by matrix

multiplication.

• Simple protocol operations: The corresponding protocol in the proposed method is similar

to that in APS [3]. Unlike the MDS-based approaches, it requires neither global topology
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information, partition of the area into small regions for generating relative maps, nor global

coordination and integration for a global map.

Our objective is to estimate, based on proximity measurements, the geographic distances from

unknown sensor nodes to beacon nodes in anisotropic sensor networks. The geographic locations

of sensor nodes are determined by lateration algorithms [3], [4], [7], and their estimation accuracy

can be further improved by refinement techniques [5], [6].

IV. PROXIMITY CHARACTERIZATION

In this section, we present our theoretical base for proximity characterization in wireless

sensor networks. This relates to inferring network topology based on the geometric structure

or other network attributes such as the hop-count. For this purpose, we analyze the proximities

measured between beacon nodes with known geographic locations, and derive optimal linear

transformation, calledproximity-distance map(PDM), that describes the relationship between

the proximities and the geographic distances in anisotropic sensor networks.

A. Embedding Spaces in Localization

The proximities measured from a (beacon or non-beacon) nodeto beacon nodes define its

coordinate in a linear system. Given that there existM beacon nodes, the coordinate of a node

si in an M-dimensional Lipschitz embedding space [14], [15], is represented by the proximity

vector:

pi = [pi1, · · · , piM ]T

wherepij is the proximity measured by theith node to thejth node andpii = 0. The overall

embedding space can be represented by anM-by-M proximity matrix P, whoseith column is

the coordinate of nodesi:

P = [p1, · · · ,pM ].

HereP is a square matrix with zero diagonal entries.

Similarly, we define the geographic distance vector and matrix as

li = [li1, · · · , liM ]T ,

and

L = [l1, · · · , lM ].
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The geographic matrixL is anM-by-M symmetric square matrix with zero diagonal entries.

B. Proximity-Distance Map (PDM)

Now we derive optimal linear transformationT, calledproximity-distance map(PDM), that

gives a mapping from the proximity matrixP to the geographic distance matrixL. Note that

T is an M-by-M square matrix. Each row vectorti of T can be obtained by minimizing the

following square error:

ei =
M

∑

k=1

(lik − tipk)
2

= ||lTi − tiP||2.

The least-square solution for the row vectorti is

ti = lTi PT (PPT )−1.

As a result, PDM is defined as

T = LPT (PPT )−1. (2)

Remark 1 The elementtij of T represents the effect of the proximity to thejth beacon node

on the geographic distance to theith beacon node. Note that the main diagonaltii of T can

be considered as scaling factors roughly approximating themapping from the proximity to the

geographic distance. The geographic distance from a node toa beacon node is specified as a

weighted sum of proximities to all the beacon nodes.

Note that as PDM retains all the proximity characteristics to all beacon nodes in all directions,

it can precisely characterize the anisotropic relationship between proximities and geographic

distances.

C. Calculation of PDM

We derive a numerically stable form of Eq. (2) with the use of thesingular-value decomposition

(SVD) [16]. Let the singular-value decomposition ofP be expressed as

P = U ·





Σ 0

0 0



 · VT , (3)

February 8, 2005 DRAFT



12

U andV are column and row orthogonal matrices:

U = [u1, · · · ,uM ],

V = [v1, · · · ,vM ],

andΣ is a diagonal matrix:

Σ = diag(σ1, · · · , σW ),

where the subscriptW is the rank of matrixP, andσi’s are singular values ofP in the decreasing

order (i.e.,σ1 ≥ · · · ≥ σW > 0). Then the matrixP+, calledpseudo-inverseor theMoore-Penrose

generalized inverseof P, is defined as

P+ = PT (PPT )−1 = V ·





Σ−1 0

0 0



 · UT

=
W

∑

i=1

1

σi

viu
T
i . (4)

With the use ofP+, PDM can be simply expressed asT = LP+.

Caution should be taken in calculating and using the pseudo-inverse ofP. If the proximity

measurements cannot be accurately made, the noise introduced in the measurement may be

excited because of the terms that contain reciprocals of small, near-zero singular values in

Eq. (4). To reduce such effects, we use thetruncated pseudo-inversemethod described in [17],

[18], in which small singular values are simply discarded bytruncating the terms at an earlier

index γ < W. That is, instead of usingΣ in Eq. (4), we use

Σγ = diag(σ1, · · · , σγ),

and the truncated pseudo-inverse ofP can be written by

P+

γ =

γ
∑

i=1

1

σi

viu
T
i . (5)

While truncating higher terms in Eq. (4) reduces the adverseeffect of measurement noises, it

may also result in significant loss of anisotropic information. To determine an adequate index

γ, we use the following criterion: the percentage accounted for by the firstk singular values is

defined by

τk =

∑k

i=1
σi

∑W

i=1
σi

.
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One may pre-determine a cut-off value,τ ∗ of cumulative percentage of singular values, and

calculateγ to be the smallest integer such thatτγ ≥ τ ∗. We usually setτ ∗ to 0.98.

Remark 2 PDM reconstructs an embedding space for geographic distances using proximities

measured between beacon nodes, i.e.,L̃ = T [p1, · · · ,pM ] = LP+
γ P ≈ LP+P = L.

A sensor node with an unknown position can obtain its proximity vector ps by counting,

for example, the hop-counts to the beacon nodes. It then obtains the estimate of its geographic

distances to the beacon nodes by multiplyingps with PDM:

l̃s = Tps = LP+

γ ps. (6)

We will discuss in Section V the protocol operations for beacon nodes to gather information for

calculatingT, and for sensor nodes to obtainT.

D. Performance Evaluation

We evaluate the performance of PDM with respect to the estimation accuracy of geographic

distances between sensor nodes in anisotropic sensor networks. The three network configurations

depicted in Figure 1 are used. We assume, for simplicity, that beacon nodes flood probing packets

to the entire sensor network and the proximity is measured inthe number of hops. We compare

the performance of PDM with that of DV-hop [3], in which each beacon nodeb calculates the

average geographic distance per hop-count as

cb =

∑M

i fd(xb,xi)
∑M

i pbi

,

and the geographic distance between a beacon nodeb and a sensor nodes is calculated as

lsb = cb psb. In each simulation run, we calculate the error index as

Ed =

∑M+N

i=1

∑M

j=1

∣

∣

∣
lij − l̃ij

∣

∣

∣

M(M + N)u
,

whereM andN are the numbers of beacon nodes and unknown nodes, respectively.

First, we evaluate the performances of DV-hop and PDM with respect to different radio ranges

(u ≤ r ≤ 2u) in the case ofM = 10. As shown in Fig. 2, the average errors of DV-hop and

PDM do not differ significantly in isotropic networks (Topology A). On the other hand, PDM

gives significantly smaller average errors in anisotropic networks (TopologyB). An interesting
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Fig. 3. Average geographic distance errors when the number of beacon nodes changes from 3 to 30.

observation is that the average errors gets large when the radio range gets large and the network

is better connected. This is because the measurement of hop-counts becomes “coarse” when the

radio range becomes large.

Fig. 3 gives the average errors versus the ratio of beacon nodes for two different values of

radio ranges (r = u andr = 1.3u). In the case of a less connected network (Fig. 3 (a),r = u),

PDM gives better estimation accuracy in all cases, and its accuracy significantly improves as the

ratio of beacon nodes increases. (This is not the case with DV-hop.) In the case of a stronger

connected network (Fig. 3 (b),r=1.3u), both PDM and DV-hop perform better than in the case

February 8, 2005 DRAFT



15

of a less connected network. The performance of DV-hop is comparable to that of PDM in

isotropic networks (TopologyA), but becomes much worse in anisotropic networks (Topology

B andC).

In summary, PDM and DV-hop use exactly the same information,i.e. the hop-counts and

geographic distances between beacon nodes. However, PDM gives significantly better estimation

accuracy in anisotropic networks.

V. D ISTRIBUTED LOCALIZATION SYSTEM BASED ON PDM

A. Procedure for Information Collection and Linear Transformation Calculation

Localization in sensor networks is carried out at an initialization phase and further can be

repeated during the lifetime of sensor networks. For example, if probing packets originated from

a beacon node are dropped at a lossy wireless channel and cannot reach sensor nodes in a

region, it is necessary for the beacon to perform the probingtask of sending probing packets

again. If a new beacon node is added after the initial deployment, some tasks for localization

need to be repeated so as to exploit the location informationof the newly deployed beacon

node. To support various scenarios, we develop the following criteria for the protocol design of

a distributed localization system: (1) a beacon node can initiate a probing procedure at any instant

so as to notify other nodes in sensor networks of its existence, and (2) without a prior knowledge

of the number of beacon nodes, beacon and sensor nodes can properly perform localization by

the use of gradually discovered information.

The procedure for collecting geographic distance and proximity information between nodes

is similar to that ofAdhoc Positioning System(APS) [3]. Here, we pay more attention to how

to minimize the communication and computational overheads. The procedure is as follows:

• (P1) Every node initializes an empty beacon list, whose entry will be filled with the location

and the proximity for beacon nodes.

• (P2) After a random delaydi (0 < di ≤ Dinit), each beacon node broadcasts to its

neighboring nodes a probing packet containing its ID, location, and the “initial” proximity

{i, xi, pi = 0}.

• (P3) Whenever a node receives a probing packet, it calculates thenew proximity. If the

new proximity is larger than the proximity in the beacon list, the node discards the probing
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packet. Otherwise, the node updates its beacon list and forwards the packet to its neighboring

nodes.

Note that the proximity can be either the hop-count or the geographic distance measured

using radio signal. If the proximity is measured as the hop-count, the proximity is increased

by one for each hop. On the other hand, if the proximity is measured with the use of radio

signals from ranging devices, it is increased by the measured geographic distance.

• (P4) If a beacon nodeb receives a probing packet containing the information for other

beacon nodes, it performs (P3) as other nodes do, and updatesthe proximity vectorpb. In

addition, it informs the other beacon nodes of its updatedpb when there is no more probing

packet from other beacon nodes during a time intervalDupdate = Dinit + Drtt, whereDrtt

is the maximum round-trip-time in the sensor networks.

In an exceptional case, if a beacon node receives no probing packet, (e.g., newly deployed

beacon node), it computes its proximity vectorpb by averaging the proximity vectors of

neighboring sensor nodes within its radio range.

• (P5) Whenever a beacon nodeb receives an update packet containing the updatedpb

information, it updates both its proximity matrixP and geographic distance matrixL.

If there is no more update packet during a time intervalDsvd = 2Dupdate +Drtt, the beacon

nodeb computes SVD ofP and obtainsT by Eq. (2).

In particular, once the SVD ofP is computed, it is not desirable to re-compute SVD of

P because the computational complexity of SVD isO(M3). Instead, an incremental SVD

technique proposed in [19] is used to updateU, Σ, andV. With computational complexity

O(M2), the incremental technique projects the new proximity vector onto the current SVD

and obtains its approximation.

• (P6) A sensor nodes obtains the proximity vectorps from its beacon list, retrievesT from

one of the beacon nodes, calculates the geographic distances to beacon nodes by Eq. (6),

and estimates its locationxs by a lateration algorithm.

In comparison with APS, the additional complexity incurredin this procedure is (1) the

communication overhead for collaboration of beacon nodes on constructingP ((P4)), and (2)

the computational overhead for calculating the SVD ofP so as to obtainT ((P5)). However,

we claim that the added complexity is not significant because(1) in many cases each beacon
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Fig. 4. Extrapolation of proximity in the case that the scopeof packet flooding is limited (circle: beacon node, square: sensor

node).

node needs only(M − 1) additional unicast packets to exchange its proximity vector with the

other beacon nodes, and (2) the SVD ofP can be incrementally computed, and its dimension

is not large (i.e.,M-by-M rather than(M + N)-by-(M + N) as in MDS-based approaches).

B. Alternatives to Packet Flooding

The packet flooding by beacon nodes can overwhelm the sensor network. If the number of

beacon nodes is sufficiently large, PDM can characterize therelationship of the geographic

distance and the proximity between sensor nodes without packet flooding. If packet flooding is

not used, (P2) and (P3) can be modified so that (1) all the beacon nodes unicast their probing

packets to one another; and (2) a sensor node with an unknown location unicasts its probing

packets to the beacon nodes and obtains its proximity vector. (We will show simulation results

for this case in Section VI-B.)

Alternatively, we can simply limit the scope of packet flooding with specifying the TTL value

to H-hops in each probing packet. One issue of this approach is that it may cause inconsistency

between the beacon lists maintained by a beacon nodeb and a sensor node that contacting

beacon nodeb. Figure 4 illustrates such an example. A sensor nodes with an unknown location

measures its proximities to a set of beacon nodes, i.e.,Bs = {b1, b2, b3, bd, be}. In (P6), nodes

contacts the closest beacon nodeb2 to obtainTb2 . As nodeb2’s beacon list isBb2 = {b1, b2, b3,

bd, u} andBb2 − Bs = {u}, nodes is required to estimate the proximity to beacon nodeu in
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order to useTb2 .

The above issue can be resolved as follows. Nodes computes the proximity to nodeu, with

the help of a set,̄B, of nodes whose hop-counts to both nodesu ands are less thanH, (e.g.,B̄

= {b1, b2, b3, s1} in Fig. 4). As each nodeni ∈ B̄ has the proximities from itself to both nodes

u ands for i = 1, · · · , |B̄|, the proximitypsu can be approximately obtained as

psu = min
i

(psni
+ pniu) .

If node s needs the geographic distances to the other beacon nodes (e.g., the beacon nodebe)

for lateration, it repeats the above approach to the others.

C. Lateration Algorithm

After (P6) is performed, each sensor node obtains the estimates of its geographic distances to

beacon nodes. A lateration algorithm is required to determine the location of the sensor node.

We consider the following lateration algorithms:

• (L1) Linearized model based method [3]: A linear system is derived by linearizing the

the Euclidean distance equations with respect toa priori location estimate. The location is

later corrected by a least square solution of the linear system. This correction process is

iteratively performed by updating the linear system with the new location estimate.

• (L2) Descent gradient method [7]: The descent gradient method with a constant step size

α is applied to minimize the objective function

E =
1

2

M
∑

i=1

(dsi − l̃si)
2.

• (L3) Non-iterative multilateration [4], [20]: For the quadratic version of the Euclidean

distance equations, a linear system is derived by subtracting one of the equations from

the other equations. The location estimate is given by the least square solution of the linear

system.

Through simulation studies, we observe that (L1) gives relatively accurate estimates, but

requires an initial guess of the location. The performance of the descent gradient method (L2)

is susceptible to the step sizeα, the selection of which is not a trivial issue. A large step size

causes divergence (especially for a large number of beacon nodes), while a small step size

causes slow convergence. Non-iterative multilateration (L3) requires neither a judicious guess of
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Fig. 5. Resulting network topologies after power control isapplied to TopologiesA andB in Fig. 1.

the initial location nor the time-consuming iteration process. However, its performance is more

susceptible to the measurement noise than the others. As a result, we use the linearized model

based lateration (L1) to determine the location of a sensor node, with the initial location set to

the location of the beacon node that is closest (in terms of the estimated Euclidean distance) to

the sensor node.

VI. EXPERIMENTAL RESULTS

To evaluate the localization performance of PDM, we have conducted a simulation study. We

compare the performances of DV-hop (DV-distance), MDS-map, and the proposed PDM-based

method in the network configurations depicted in Figure 1. Note that unlike DV-hop and PDM,

MDS-map requires the global information between all the sensor nodes. We consider two sets

of scenarios according to how the proximity information is obtained:

(A) the proximity information is gathered by packet flooding(Section V-A); and

(B) power control is first applied so that each sensor node does not transmit with the maximal

transmission power, but instead an adequate transmission power range to maintain network

connectivity. As a result, different sensor nodes may have different radio ranges. Moreover,

the proximity information is disseminated via unicasts (tothe other beacon nodes; Section V-

B), rather than packet flooding.
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Figure 5 depicts the resulting network topology after powercontrol has been applied to Topolo-

gies A and B. In this set of scenarios, as each sensor node has a differentradio range, the

product of the hop-count and the radio range is no longer a proper estimate of the geographic

distance. This implies that the relationship between the geographic distance and the proximity

is more complicated in this scenario than in scenario A.

In each experiment, two types of proximity are considered: the hop-count and the estimated

geographic distance between sensor nodes (obtained from the received radio signal strength).

Also, the following error index is used to quantify the estimation error:

Ep =

∑M+N

i=1

∑M+N

j=1
fd(xi,xj)

(M + N)2 u
,

whereM + N is the total number of sensor nodes.

A. Results for Scenario A

Effect of radio ranges on localization accuracy: First we investigate the effect of radio

ranges (or equivalently how well the network is connected) on the localization accuracy in

isotropic (TopologyA) and anisotropic (TopologyB) networks. If sensor nodes are uniformly

distributed in a square area and well connected, the networkis considered to be isotropic. Figure

6 (a) and (b) depict the average location errors in isotropicnetworks (TopologyA). PDM gives

the smallest estimation error under all cases. DV-hop performs as well as PDM when sensor

nodes are well connected (r ≥ 1.4u). If the hop-count is used as the proximity measure (Fig. 6

(a)), the performance of all three methods (in terms of estimation accuracy) slightly deteriorates

as the radio range increases. This is because the proximity is expressed as coarser integer values.

On the other hand, if the estimated geographic distance is used as the proximity measure (Fig.

6 (b)), the performance improves as the radio range increases. Figure 6 (c) and (d) depict the

average location errors in anisotropic networks (TopologyB). The estimation error of PDM is,

respectively, half and one-third of that of MDS-map and DV-hop.

Effect of the number of beacon nodes on localization accuracy: Second we investigate

the effect of the number of beacon nodes on the localization accuracy in isotropic (TopologyA)

and anisotropic (TopologiesB andC) networks. We vary the number of beacon nodeM from 4

to 30. In the case ofM = 30, the ratio of beacon nodes to the total number of sensors is 0.12.
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(a) TopologyA (proximity = hop-count)
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(b) TopologyA (proximity = estimated distance)
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(c) TopologyB (proximity = hop-count)

 0

 0.3

 0.6

 0.9

 1.2

 1.5

 6  10  14  18  22  26  30

av
er

ag
e 

lo
ca

tio
n 

er
ro

r

connectivity

dv-distance
mds-map

pdm

(d) TopologyB (proximity = estimated distance)

Fig. 6. Localization errors versus radio ranges (u ≤ r ≤ 2u), when the number of beacon node is 10. The x-axis is the number

of neighbors (asr changes fromu to 2u).

Figure 7 gives the localization errors when the hop-count isused as the proximity measure.

In the case of isotropic networks (TopologyA), if the radio range is large enough to provide

strong connectivity, (e.g.,r = 1.3u in Fig. 7 (b)), DV-hop and PDM give almost the same

performance. In the case of anisotropic networks (TopologiesB andC), DV-hop and MDS-map

perform comparatively worse than PDM (Fig. 7 (c)–(f)).

Figure 8 gives the localization errors when the estimated Euclidean distance is used as the the

proximity measure. As compared to Fig. 7, the performance ofall three methods significantly

improves, and PDM gives the smallest estimation errors.
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(a) TopologyA (r = u)
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(b) TopologyA (r = 1.3u)
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(c) TopologyB (r = u)
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(d) TopologyB (r = 1.3u)
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(e) TopologyC (r1 = u, r2 = 1.3u)
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(f) Topology C (r1 = 1.3u, r2 = 1.69u)

Fig. 7. Localization errors versus the ratio of beacon nodes. The hop-count is used as the proximity metric.
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(a) TopologyA (r = u)
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(b) TopologyA (r = 1.3u)
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(c) TopologyB (r = u)
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(d) TopologyB (r = 1.3u)
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(e) TopologyC (r1 = u, r2 = 1.3u)
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(f) Topology C (r1 = 1.3u, r2 = 1.69u)

Fig. 8. Localization errors versus the ratio of beacon nodes. The estimated geographic distance is used as the proximitymetric.
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(a) TopologyA (denser at right half)
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(b) TopologyA (denser at left half)
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(c) TopologyB (denser at right half)
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(d) TopologyB (denser at left half)
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(e) TopologyC (denser at right half)
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(f) Topology C (denser at left half)

Fig. 9. Localization errors versus the ratio of beacon nodes, when beacon nodes are not uniformly distributed. The density of

beacon nodes is either linearly increasing (left column) ordecreasing (right column) with respect to the x-axis. The hop-count

is used as the proximity metric.
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Effect of the non-uniform distribution of beacon nodes on localization accuracy: Third

we investigate the effect of the non-uniform distribution of beacon nodes in isotropic (Topology

A (r = u)) and anisotropic (TopologyB (r = u) andC (r1 = u, r2 = 1.3u)) networks. In order to

obtain the non-uniform distribution of beacon nodes, we chooseM beacon nodes from sensor

nodes according to a probabilitypb, which either linearly increases or decreases with respectto

the x-axis, i.e.,pb = 2rbx/xmax or pb = −2rb(x/xmax − 1), whererb, x, andxmax are the ratio

of beacon nodes to sensor nodes, the x coordinate value for a selected node, and the width of

sensor network area, respectively.

Figure 9 gives the localization errors when the beacon node are non-uniformly distributed. As

the hop-count is used as the proximity metric, the location errors can be compared with those

for the uniform distribution in Fig. 7 (a), (c), and (e). In Topology A, the location errors for

DV-hop is the smallest when the density of beacon nodes increases with respect to the x-axis

in Fig. 9 (a). This is because the deployment of the sensor nodes is slightly denser in right half

plane as shown in Fig. 1 (a). MDS-map and PDM give almost the same performance regardless

of the distribution of beacon nodes. In TopologiesB andC, the accuracy of DV-hop is apparently

affected by the distribution of beacon nodes. The localization errors of DV-hop for Topologies

B andC are the smaller in Fig. 9 (d) and (e) than in Fig. 9 (c) and (f), respectively. Moreover,

the errors are even smaller than those in the case of the uniform distribution in Fig. 7 (c) and

(e), respectively. This implies that the locations of beacon nodes for DV-hop should be carefully

determined so as to gather topological information accurately. In contrast, we observe that the

performances of MDS-map and PDM are less sensitive to the distribution of beacon nodes in

both isotropic and anisotropic networks.

In summary, DV-hop (DV-distance) gives accurate estimatesof geographic locations only in

isotropic networks with high connectivity. MDS-map gives better performance than DV-hop (DV-

distance) in TopologyB, perhaps due to the fact that the two eigenvectors obtained by MDS

capture principal components of anisotropic properties. PDM achieves the best performance

consistently. As the radio range and the number of beacon nodes are larger than certain thresholds,

the estimation errors for PDM fall below 0.3u under all cases.
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(b) TopologyB

Fig. 10. Localization errors versus the ratio of beacon nodes in power-controlled sensor networks. The hop-count is used as

the proximity metric.

B. Results for Scenario B

Effect of the number of beacon nodes on localization accuracy: Figure 10 shows the

localization errors when the hop count is used as the proximity measure. We vary the number of

beacon nodesM from 4 to 50. In the case ofM = 50, the ratio of the number of beacon nodes

to the total number of nodes is 0.2. As shown in Fig. 10 (a), theestimation errors for DV-hop

and MDS-map are quite large and decrease slowly as the numberof beacon nodes increases.

The estimation errors for PDM are much smaller and decrease faster as the number of beacon

nodes increases. This implies that PDM can capture the topological features in the case of low

connectivity (as power control has been applied). We observe that the error falls below 1 and

0.5 for M > 14 (ratio = 0.056) and 41 (ratio = 0.164), respectively. In Fig. 10 (b), DV-hop

and MDS-map do not show performance improvement whenM > 25 (ratio = 0.1), while PDM

gives almost the same improvement as that in Fig. 10 (a).

In summary, it is more difficult to extract the geographic information from proximity measure-

ments, after sensor nodes exercise power control and the network connectivity becomes lower.

Even under the case, PDM makes accurate location estimationas long as the ratio of beacon

nodes exceeds a certain threshold.
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VII. CONCLUSION

In this paper, we have designed and evaluated a new PDM-basedlocalization method in

anisotropic sensor networks. We represent the measured proximities and the geographic dis-

tances in Lipschitz embedding spaces, and devise a transformation method that projects the

coordinates in the embedding space built on proximities into the geographic distance space.

The transformation matrix accurately characterizes anisotropic network topologies because it

retains the components of proximities to the beacon nodes inall directions. We show that the

transformation can be obtained by using the truncated SVD pseudo-inverse technique even in

the presence of measurement noises. Finally, we show via simulation that the proposed PDM-

based method outperforms DV-hop, DV-distance [3], and MDS-map [10], and makes robust and

accurate estimates of sensor locations in both isotropic and anisotropic sensor networks.

Recall that in Section V-B, we state that if the number of beacon nodes is sufficiently large,

each (beacon or non-beacon) node can measure its proximities to a subset of beacon nodes by

unicast probing. The criteria for correctness are (1) all the beacon nodes in a subset unicast

their probing packets to one another; and (2) an unknown nodeobtains the proximity-distance

map (PDM) from one of the beacon nodes in the same subset. As part of our future work, we

will investigate how to decompose the set of beacon nodes into subsets, so that proximity

measurements among beacon nodes in each subset are sufficient to capture the anisotropic

characteristics of the entire sensor network.
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