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Abstract

In this paper, we consider the issue of localization in anigic sensor networks. Anisotropic
networks are differentiated from isotropic networks intttieey possess properties that vary according
to the direction of measurement. Anisotropic charactesstesult from various factors such as the
geographic shape of the region (non-convex region), thierdiit node densities, the irregular radio
patterns, and the anisotropic terrain conditions. In otdeharacterize anisotropic features, we devise a
linear mapping method that transforms proximity measurgmieetween sensor nodes into a geographic
distance embedding space by using the truncated singullae wEecomposition-based (TSVD-based)
pseudo-inverse technique. This transformation retaimsash topological information as possible and
reduces the effect of measurement noises on the estimatgeogfraphic distances. We show via
simulation that the proposed localization method outgerfo DV-hop, DV-distance, and MDS-map,
and makes robust and accurate estimates of sensor locatidimgh isotropic and anisotropic sensor

networks.
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. INTRODUCTION

Driven by advances in MEMS micro-sensors, wireless netingrkand embedded processing,
ad-hoc networks of devices and sensors with (limited) sgnsind wireless communication
capabilities are becoming increasingly available for caroial and military applications such
as environmental monitoring (e.g., traffic, habitat, sggyrindustrial sensing and diagnostics
(e.g., factory, appliances), critical infrastructure teation (e.g., power grids, water distribution,
waste disposal), and situational awareness for battlefippdications. For these purposes, each
sensor node collaborates with others in sensing, mongpiamd tracking events of interests
by exchanging acquired data, usually stamped with the tinte @osition information. If the
data sent by a sensor node carries incorrect position irgtom, it could be useless or even
harmful. As such, localization — how each sensor node obti#snaccurate position, even in the
presence of different geographic shapes of the monitoeggn (non-convex region), different
node densities, irregular radio patterns, and anisotrggni@in conditions — has become an
important and critical issue in deploying wireless senstimorks.

Localization for wireless sensor networks has been intehsstudied in recent years. A simple
approach of having all the sensor nodes equipped with a bpmsationing system (GPS) does
not suffice because of the size, cost, and power consumpdiwstraints of sensor nodes. Instead,
most localization methods determine the positiongrddnownsensor nodes under the assumption
that a small portion of sensor nodes, caltegcon nodesare aware of their positions by means of
manual configuration or GPS [1]-[12]. In these methods, e&cisor node estimates (based either
ranging techniques or proximity measurements) its digtare beacon nodes, and calculates its
position by triangulation/lateration techniques. Refieaincan be made to iteratively improve
the accuracy of these localization methods, by, for exangpéaually adjusting the node position
S0 as to minimize the discrepancy between the calculatetidéan distances and the measured
distances to its neighboring nodes [5], [6].

One underlying assumption used in most localization methsdhat the network topology
is isotropic, i.e., the properties of proximity measuretsesre identical imall directions. Un-
fortunately, this assumption often does not hold in pragtaue to the geographic shape of the
region (non-convex region), the different node densittls, irregular radio patterns, and the

anisotropic terrain conditions. As a result, their perfance degrades severely in anisotropic

February 8, 2005 DRAFT



sensor networks. For example, in one of the pioneering nisth&PS [3], each beacon node
computes the average distance per hop by dividing the sunstaindes to the other beacon nodes
by the sum of hop-counts, without taking into account of thet that the per-hop distance may
be different in different directions, due to terrains, @lo#ts, and/or other effects. A sensor node
that does not know its location estimates its distance to acdre node, by multiplying the
average per-hop-distance of the beacon node by the hop-tmthee beacon node (measured by
the sensor node).

Recently, several methods have been proposed for anisotnepvorks, among which the
multidimensional scaling (MDS) based methods [11], [12}yrhave received the most attention.
By assuming that the network is locally isotropic in smaljioms, they establish local maps
based on the MDS technique in small regions, and merge loapknmto a global map covering
the entire sensor network area. Although these “divide andjger” methods further improves
the accuracy of localization under certain cases, theilopaances are quite susceptible to the
choice of the size of small regions. As a matter of fact, tlisameter depends greatly on the
terrain conditions and other factors that affect the igmtrof the network.

In this paper, we present a new technique to analyze thearddiip between the geographic
distance and the proximity between sensor nodes in anotnetworks. Conceptually, localiza-
tion can be considered as an embedding problem that mapsttbé @bjects into an embedding
space. In Lipschitz embeddings, a coordinate space is defimeh that each axis corresponds to
areference setf objects, and the coordinate values of an objeate the distances fromto the
reference objects [13], [14], [15]. Based on this concepthesensor node has two coordinates
in Lipschitz embedding spaces that correspond, respégticethe proximity measure and the
Euclidean distance between itself and beacon nodes.

We derive an optimal linear transformation that projecte embedding space (that is built
upon proximity measures) into the geographic distanceespgcusing the singular value de-
composition (SVD) technique. Thé, )" element of the transformation matrix represents
the effect of proximity to thej’* beacon node on the geographic distance toithéeacon
node. The distance to a beacon node is computed by a weightedos proximities to all
the beacon nodes iall directions. Moreover, by introducing a truncation methodsSiVD, the
proposed method reduces the effect of noise in the transtovm process, while keeping as

much topological information as possible. Finally, we shae simulation that as compared to
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MDS-based localization methods, the proposed localinati@thod makes robust and accurate
estimates of node locations in both isotropic and anisatrepnsor networks.

The rest of the paper is organized as follows: In Section #,psovide preliminary material
and formulate the localization problem. In Section Ill, weega summary of related work in the
literature. In Section V-V, we first introduce optimal liaetransformation from the proximity
space into the geographic distance space, and then elalmragtystem implementation issues.
Following that, we present in Section VI experimental resudnd conclude the paper in Section
VII.

[I. BACKGROUND

Localization Problem: The localization problem we consider is as follows: Givee th
proximity measure$o beacon nodes, determine the unknown locations of serstasn where
the proximity between two nodes is defined as a quantitateasure that reflects the geographic
distance. For example, in range-free sensor networks,ankteharacteristics such as the number
of hops are adequate candidates as the proximity measure.

Consider a sensor netwogkwith M beacon nodes anl (non-beacon) nodes with unknown
positions. (For notational convenience, we term the nod#s amknown positions asnknown
nodes.) The locations of beacon nodes and unknown nodeseaged asx; € R? in d-
dimensional space foif = {1,---, M} and: = {M + 1,--- ,M + N}, respectively. The

geographic distance between two nodesandx; is then defined by the Euclidean distance:

d
dij = fa(xi, %) = \| Y (wix — 28)?, (1)
k=1
wherez;, andz;;, are thek' coordinates ofk; and x;, respectively. Letp,; be the proximity
measure between th& node and thg** node. Then the localization problem can be formally

stated as
Given: x;, p;;, andp; fori,j e {1,--- M},
Estimate:x, for a sensor node.

Namely, under the assumption that the locatignsf the beacon nodes are known, the problem
is to estimate, with the use of the proximitigs andp,, for i, j € {1,---, M}, the geographic

positionx, of the sensor node.
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Definition of Isotropy: For a sensor networl§, we assume that there exists a certain
mapping function,f, : R* — R, that describes the mapping from the geographic locations
(x; andx;) to the measured proximity,; for each pair of sensor nodes, where the proximity
is written asp;; = f,(x;,x;). If the mappingf,(x;,x;) is a function of the Euclidean distance
betweenx; andx;, the sensor network is said to lmotropic i.e. p;; = f,(x;,%x;) = g,(d;j),
Vi,je{l,...,.M+ N} andg, : R — R

In practice, the proximities measured by a sensor node tothers often differ in different
directions. This implies that the proximity between a pdisensor nodes depends greatly on the
distinct locations of these sensor nodes, and the senseorkets anisotropic For instance, if
the proximity is defined by the minimum hop-count obtainedlbgding probing packets, and if
sensor nodes are scattered in a non-convex region, the patiedn a pair of sensor nodes may
not be a straight line and detours around the region. Thidteem a larger proximity between
the sensor nodes than that in a convex region. Similarly,weakly connected sensor network,
the geographic distance may be shorter than the productedfdp-count and the transmission
range, as intermediate nodes may not exist on the straightktween the two nodes. That is,
a loosely populated sensor network is likely anisotropic.

Figure 1 gives several examples of isotropic/anisotropitser networks. (We will use these
networks both for the subsequent discussion and for thelation study.) Figure 1 (a) gives an
isotropic sensor network, where 250 sensor nodes (eachawididio range of’) are uniformly
distributed within a square area. For notational convergenve normalize the distance with
the radio range, i.e., the distance is measured in unitswof= r. The square area is of size
10u x 10u. Figure 1 (b) and (c) give two possible anisotropic sensaworks. In Fig. 1 (b),
sensor nodes enclose a circular obstacle in the right heatiepland an anisotropic network results
because of geographic structures. In this case, even thtbegieographic distances of two pairs
of nodes are the same, their proximities can be quite difteta Fig. 1 (c), sensor nodes in the
left half plane have a radio range of = u, whereas those in the right half plane have a radio
range ofr, = 1.3u. An anisotropic network results because of different radioges (due to,
for example, terrain and foliage effects). This differeratgo makes the ratio of the geographic
distance to the hop-count different in different regions.

In anisotropic sensor networks, in order to obtain accu@talization results, it is necessary

to compensate for the anisotropic properties by gatherimgy @tilizing information on the
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(a) Topology.A: Isotropic network (b) Topology B: Anisotropic network

due to geographic structures

(c) TopologyC: Anisotropic network

due to different radio ranges

Fig. 1. Sensor network topologies used in the simulatiodystu

relationship between the geographic distances and theumsebgroximities in as many directions

as possible.

[1l. RELATED WORK
A. Generic Approaches

Bulusu et al. [1] attempted to reduce the use of GPS by placing multipleesobeacon
nodes) with overlapping coverage regions at known locatidine authors proposed a simple
localization method that determines the location of a sensde as the centroid of the locations

of its neighboring beacon nodes. Dohedy al. [2] formulated the localization problem as a
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convex optimization problem with proximity constraintsgosed by known connections. The
problem was then solved in a centralized manner.

Niculescuet al. [3] proposed a distributed positioning algorithm, called-hoc positioning
system(APS), in which three different propagation methods weneegtigated, i.e.DV-hop
DV-distance and Euclideanschemes. The DV-hop scheme employs distance vector exehang
Each node exchanges distance tables that contain thedosatf, and the hop-counts to, beacon
nodes with its neighboring nodes. Once a beacon node oliteese distance tables from other
beacon nodes, it estimates an average distance per hopxglodit to estimate the geographic
distance from each unknown node to the beacon node. The wnknode estimates its location
by performing lateration, i.e., a simplified version of th®$ triangulation. The DV-distance
scheme employs the geographic distance measured with thefusdio signals, rather than
hop-counts. Finally the Euclidean scheme relies on the gagnof neighboring sensor nodes
to estimate the geographic location.

Savvideset al. proposed an iterative multilateration method in [4] andittgroved version
with the Kalman filter based position refinement process in [&ch node simply calculates
an initial estimate of its location based on geometric aamsts, and updates the estimate by
the iterative multilateration. Savares¢ al. [5] proposed an algorithm split into two pahses:
the start-up phase and theefinementphase. An initial position of a node is obtained in the
start-up phase and is gradually adjusted in the refinemesdephy using the measured ranges
between its neighboring nodes. Nagpahl. [7] proposed a coordinate formation algorithm that
consists of a gradient descent method for estimating thardies to neighboring nodes and a
multilateration method for estimating the locations. Thlgorithm achieves estimate accuracy
within 20% of the radio range in a reasonable simulationremvinent. Heet. al [8] proposed a
simple, area-based localization technique that does mpiiree expensive lateration algorithms.
Each node chooses three beacon nodes from all neighboragpherodes, forms the triangles
by connecting these three beacon nodes, and calculategnber ©f the intersection of all the
triangles to determine its position.

Most of the proposed positioning algorithms including [&]-work well in isotropic sensor
networks. However, their performance severely degradesisotropic networks as a result of

not taking into account of the anisotropic properties.
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B. Multidimensional Scaling (MDS) Based Approaches

Several novel methods using multidimensional scaling (M@re recently proposed for
localization in sensor networks [9], [10], [11], [12]. Midimensional scaling is a data analysis
technique used to visualize proximity of a set of objects lova dimensional space. L& be a
proximity matrix, whoseij'* element is the proximity measured between #tieand j'* sensor
nodes. The squared matrRRP7 is shifted to the center of the matri®, and is decomposed
by similarity transformation. Then, by selecting the eigmiors associated the first largest
eigenvalues, these localization methods obtainramimensional space representation (s
usually 2-3), called aelative map Locations in the relative map are relative to each othet, an
hence have to be rotated, shifted, and reflected in orderitaide with the geographic locations
of sensor nodes.

Raykaret al. [9] formulated a localization problem for sound sensors acidiators as a non-
linear least square minimization problem. The authors ssiggl to use the coordinates obtained
by MDS as the initial guess to mitigate the local minima peoil

Shanget al.[10] proposed a MDS-based localization method, callealS-map that works well
with connectivity information. HowevetyIDS-maprequires availability of global connectivity
information for all the sensor nodes (in order to calculdte similarity transformation), and
is a centralized method with complexity @), wheren is the total number of sensor nodes.
Moreover,MDS-mapdoes not seem to outperform the previous methods, when timderuof
beacon nodes are large.

To eliminate the need for global connectivity informatiamecentralized computation, Shang
et al.[11] proposed an improved version DS-map calledMDS-map (P) Each node performs
MDS with the connectivity information to its neighbor nodmsd obtains a local (relative) map.
These local maps are then merged together to form a globdatiye® map. The global map has
to be aligned, by a linear transformation, in order to cardta geographic (absolute) map.

Ji and Zha [12] proposed to use thealing by majorizing a complicated functig§MACOF)
to obtain weighted MDS iteratively, when a portion of therpase proximity information is not
available. The relative maps are calculated in small grafpsensor nodes and are merged in
a distributed fashion. The authors proposed an incremantldistributed method to align the

relative map to the geographic map.
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Although the MDS-map method [10] leverages global conmégtinformation, it does not
give better performance in anisotropic sensor networka tha latter two methods [11], [12]
that establish small local maps and merge them to constrgicteal map. This is because MDS
used in aforementioned approaches leave out significaatnation by using two (or three)
eigenvectors of the: eigenvectors obtained from the similarity transformatidihis implies
that two (or three) dimensions are not sufficient to catch ahisotropic properties. Namely,
the two (or three) eigenvectors selected in the MDS procatssnronly two (or three) principal
components of the proximity information, and other siguifitinformation including anisotropic
network properties are essentially left out. The latter methods [11], [12], on the other hand,
divide an anisotropic sensor network into a number of snegjians, each of which is considered
to be locally isotropic. Relative, local maps are then dithed, and merged into a global map.
As a result, the anisotropic characteristics can be bedtained in the global map. The downside
of these two approaches is, however, the performance ige gusceptible to the choice of an
appropriate region size and the origin of the global map. pédormance is also affected by

error propagation during the merging process.

C. Our Proposed Method

Our proposed method bears the similarity with the MDS-basethods in that it uses the
singular value decomposition (SVD) technique to analyze ghoximity matrix. However, it
differs in several fundamental aspects:

« Accurate characterization. We employ SVD to analyze the relationship between the
geographic distances and the proximities, with the objeaif retaining as much anisotropic
characteristics as possible.

« Less computational complexity In the proposed method, SVD is applied to the proximity
matrix only between beacon nodes, but not all the nodes.oAh SVD has computa-
tional complexity of Of?), the parameter. refers to the number of beacon nodes. An
unknown sensor node simply computes its geographic distembeacon nodes by matrix
multiplication.

« Simple protocol operations The corresponding protocol in the proposed method is amil

to that in APS [3]. Unlike the MDS-based approaches, it rezguneither global topology
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information, partition of the area into small regions fongeating relative maps, nor global
coordination and integration for a global map.
Our objective is to estimate, based on proximity measurésnéme geographic distances from
unknown sensor nodes to beacon nodes in anisotropic seetvaoriks. The geographic locations
of sensor nodes are determined by lateration algorithm$4B] 7], and their estimation accuracy

can be further improved by refinement techniques [5], [6].

V. PROXIMITY CHARACTERIZATION

In this section, we present our theoretical base for prayimsharacterization in wireless
sensor networks. This relates to inferring network topglbgsed on the geometric structure
or other network attributes such as the hop-count. For thipgse, we analyze the proximities
measured between beacon nodes with known geographicdosatand derive optimal linear
transformation, callegproximity-distance magPDM), that describes the relationship between

the proximities and the geographic distances in anisatrepnsor networks.

A. Embedding Spaces in Localization

The proximities measured from a (beacon or non-beacon) todmacon nodes define its
coordinate in a linear system. Given that there eXisbeacon nodes, the coordinate of a node
s; in an M-dimensional Lipschitz embedding space [14], [15], is espnted by the proximity
vector:

pbi = [pﬂ, s J%M]T

wherep;; is the proximity measured by th&" node to thej’ node andp;; = 0. The overall
embedding space can be represented by/ahy-A/ proximity matrix P, whose:** column is

the coordinate of nods;:
P= [pla"' 7PM]-
Here P is a square matrix with zero diagonal entries.
Similarly, we define the geographic distance vector and imas

]-i = [lﬂ? T 7liM]T

Y

and
L=, -, Lyl
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The geographic matrik. is an M-by-M symmetric square matrix with zero diagonal entries.

B. Proximity-Distance Map (PDM)

Now we derive optimal linear transformatidh, called proximity-distance magPDM), that
gives a mapping from the proximity matriR to the geographic distance matidx Note that
T is an M-by-M square matrix. Each row vectay of T can be obtained by minimizing the

following square error:

M

e = Z(lik_tipk)z

k=1
= |1 —t:P[]*.

The least-square solution for the row vectgris
t, =1'PT(PP")".

As a result, PDM is defined as
T = LP"(PP")".. (2)

Remark 1 The element;; of T represents the effect of the proximity to tjf& beacon node
on the geographic distance to th# beacon node. Note that the main diagomalof T can
be considered as scaling factors roughly approximating rtkepping from the proximity to the
geographic distance. The geographic distance from a node b@acon node is specified as a

weighted sum of proximities to all the beacon nodes.

Note that as PDM retains all the proximity characteristmwsll beacon nodes in all directions,
it can precisely characterize the anisotropic relatigndietween proximities and geographic

distances.

C. Calculation of PDM

We derive a numerically stable form of Eq. (2) with the usehefsingular-value decomposition

(SVD) [16]. Let the singular-value decomposition Bfbe expressed as

2 0 .
P=U- V7 3)
0 0
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U andV are column and row orthogonal matrices:
U = [ulv"' 7u]\/1]7
V = [Vla'”7vl\/l]7

and X is a diagonal matrix:

3 =diag(oy, -+ ,ow),

where the subscript is the rank of matriXP, ando;’s are singular values d? in the decreasing
order (i.e.o; > --- > oy > 0). Then the matri¥*, calledpseudo-inverser theMoore-Penrose

generalized inversef P, is defined as

10
Pt = PY(PP))! = V. .Ut

_ Zéviuf. (4)

i=1 "
With the use ofP*, PDM can be simply expressed @s= LP*.

Caution should be taken in calculating and using the pseéudgse ofP. If the proximity
measurements cannot be accurately made, the noise intdaocthe measurement may be
excited because of the terms that contain reciprocals oflsmear-zero singular values in
Eg. (4). To reduce such effects, we use thencated pseudo-inversaethod described in [17],
[18], in which small singular values are simply discardedttuncating the terms at an earlier

index~y < w. That is, instead of usind in Eq. (4), we use
E’Y = diag(alv e 707)7

and the truncated pseudo-inversebbfcan be written by
+ ~ 1 T
Pl = Z —Viu; . (5)
i=1 "
While truncating higher terms in Eq. (4) reduces the adveffect of measurement noises, it
may also result in significant loss of anisotropic inforroati To determine an adequate index
v, we use the following criterion: the percentage accountedy the firstk singular values is

defined by .
> ic1 i
ZZl o
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One may pre-determine a cut-off valug, of cumulative percentage of singular values, and

calculatey to be the smallest integer such that> 7*. We usually set to 0.98.

Remark 2 PDM reconstructs an embedding space for geographic digmmsing proximities

measured between beacon nodes, Les T [p1,--- ,pu] = LPP ~ LP*P = L.

A sensor node with an unknown position can obtain its proimrector p, by counting,
for example, the hop-counts to the beacon nodes. It thennsbtiae estimate of its geographic

distances to the beacon nodes by multiplyjngwith PDM:

ls - Tps = LPjy_ps (6)

We will discuss in Section V the protocol operations for lwanodes to gather information for

calculatingT, and for sensor nodes to obtdlh

D. Performance Evaluation

We evaluate the performance of PDM with respect to the esitimaccuracy of geographic
distances between sensor nodes in anisotropic sensormstwe three network configurations
depicted in Figure 1 are used. We assume, for simplicity,ibacon nodes flood probing packets
to the entire sensor network and the proximity is measurddemumber of hops. We compare
the performance of PDM with that of DV-hop [3], in which eackaoon nodé calculates the
average geographic distance per hop-count as
2 falx, %)

ZZM Dbi

and the geographic distance between a beacon hoaled a sensor node is calculated as

Ch

Y

ls, = ¢ psp- IN €ach simulation run, we calculate the error index as
M+N M 7
Do g |l — b
B M(M + N)u ’

where M and N are the numbers of beacon nodes and unknown nodes, reghectiv

Ea

First, we evaluate the performances of DV-hop and PDM wisipeet to different radio ranges
(u < r < 2u) in the case ofM = 10. As shown in Fig. 2, the average errors of DV-hop and
PDM do not differ significantly in isotropic networks (Topgy .4). On the other hand, PDM

gives significantly smaller average errors in anisotrogtvorks (TopologyB). An interesting
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Fig. 3. Average geographic distance errors when the numbleearon nodes changes from 3 to 30.

observation is that the average errors gets large when the range gets large and the network
is better connected. This is because the measurement afdwis becomes “coarse” when the
radio range becomes large.

Fig. 3 gives the average errors versus the ratio of beacoasnfd two different values of
radio rangesr(= u andr = 1.3u). In the case of a less connected network (Fig. 3 {a}, u),
PDM gives better estimation accuracy in all cases, and #aracy significantly improves as the
ratio of beacon nodes increases. (This is not the case withdpV) In the case of a stronger
connected network (Fig. 3 (b)=1.3u), both PDM and DV-hop perform better than in the case
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of a less connected network. The performance of DV-hop ispaosable to that of PDM in
isotropic networks (Topology), but becomes much worse in anisotropic networks (Topology
B and(C).

In summary, PDM and DV-hop use exactly the same informati@n,the hop-counts and
geographic distances between beacon nodes. However, P gignificantly better estimation

accuracy in anisotropic networks.

V. DISTRIBUTED LOCALIZATION SYSTEM BASED ONPDM
A. Procedure for Information Collection and Linear Transfmtion Calculation

Localization in sensor networks is carried out at an ination phase and further can be
repeated during the lifetime of sensor networks. For exapmipprobing packets originated from
a beacon node are dropped at a lossy wireless channel andta&ach sensor nodes in a
region, it is necessary for the beacon to perform the prokasy of sending probing packets
again. If a new beacon node is added after the initial depémtmsome tasks for localization
need to be repeated so as to exploit the location informatfothe newly deployed beacon
node. To support various scenarios, we develop the follgwiiteria for the protocol design of
a distributed localization system: (1) a beacon node cdiaiaia probing procedure at any instant
So as to notify other nodes in sensor networks of its exigteaied (2) without a prior knowledge
of the number of beacon nodes, beacon and sensor nodes gqatlynoerform localization by
the use of gradually discovered information.

The procedure for collecting geographic distance and pribyiinformation between nodes
is similar to that ofAdhoc Positioning Systef®PS) [3]. Here, we pay more attention to how

to minimize the communication and computational overhe@tie procedure is as follows:
« (P1)Every node initializes an empty beacon list, whose entryvelfilled with the location
and the proximity for beacon nodes.
o (P2) After a random delayd; (0 < d; < D,,;), each beacon node broadcasts to its

neighboring nodes a probing packet containing its ID, iocatand the “initial” proximity

{iv Xiy, Di = O}
« (P3) Whenever a node receives a probing packet, it calculatemeateproximity. If the

new proximity is larger than the proximity in the beacon,libie node discards the probing
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packet. Otherwise, the node updates its beacon list andfdexhe packet to its neighboring
nodes.

Note that the proximity can be either the hop-count or theggeuhic distance measured
using radio signal. If the proximity is measured as the hopnt, the proximity is increased
by one for each hop. On the other hand, if the proximity is mes with the use of radio
signals from ranging devices, it is increased by the medsge®graphic distance.

(P4) If a beacon nodé receives a probing packet containing the information fdreot
beacon nodes, it performs (P3) as other nodes do, and upgtiatesoximity vectorp,. In
addition, it informs the other beacon nodes of its updatgdhen there is no more probing
packet from other beacon nodes during a time inte®aliae = Dinit + Dy, Where D,y

is the maximum round-trip-time in the sensor networks.

In an exceptional case, if a beacon node receives no prolaickep (e.g., newly deployed
beacon node), it computes its proximity veciay by averaging the proximity vectors of
neighboring sensor nodes within its radio range.

(P5) Whenever a beacon nodereceives an update packet containing the updaiged
information, it updates both its proximity matri® and geographic distance matrlx

If there is no more update packet during a time inte®al; = 2D.,,44tc + D1, the beacon
nodeb computes SVD ofP? and obtainsT by Eq. (2).

In particular, once the SVD oP is computed, it is not desirable to re-compute SVD of
P because the computational complexity of SVDA$M?). Instead, an incremental SVD
technique proposed in [19] is used to upditeX, andV. With computational complexity
O(M?), the incremental technique projects the new proximity @eonto the current SVD
and obtains its approximation.

(P6) A sensor node obtains the proximity vectop, from its beacon list, retrieve¥ from
one of the beacon nodes, calculates the geographic distémdmeacon nodes by Eqg. (6),

and estimates its locatiox, by a lateration algorithm.

In comparison with APS, the additional complexity incurredthis procedure is (1) the

communication overhead for collaboration of beacon nodesanstructingP ((P4)), and (2)

the computational overhead for calculating the SVDPRofso as to obtairill' ((P5)). However,

we claim that the added complexity is not significant becgd3dan many cases each beacon
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Fig. 4. Extrapolation of proximity in the case that the scopg@acket flooding is limited (circle: beacon node, squaesissr

node).

node needs onlyM — 1) additional unicast packets to exchange its proximity veutith the
other beacon nodes, and (2) the SVDR®fcan be incrementally computed, and its dimension
is not large (i.e.M-by-M rather than(M + N)-by-(M + N) as in MDS-based approaches).

B. Alternatives to Packet Flooding

The packet flooding by beacon nodes can overwhelm the seeseork. If the number of
beacon nodes is sufficiently large, PDM can characterizeretetionship of the geographic
distance and the proximity between sensor nodes witholWepdiooding. If packet flooding is
not used, (P2) and (P3) can be modified so that (1) all the Imeacdes unicast their probing
packets to one another; and (2) a sensor node with an unknmeatidn unicasts its probing
packets to the beacon nodes and obtains its proximity ve@M& will show simulation results
for this case in Section VI-B.)

Alternatively, we can simply limit the scope of packet floogliwith specifying the TTL value
to H-hops in each probing packet. One issue of this approachaidgttmay cause inconsistency
between the beacon lists maintained by a beacon moded a sensor node that contacting
beacon nodé. Figure 4 illustrates such an example. A sensor nodéth an unknown location
measures its proximities to a set of beacon nodes,B.e= {b1, bs, b3, by, b.}. In (P6), nodes
contacts the closest beacon ndddo obtainT,,. As nodeb,’s beacon list isBy, = {b1, bs, b3,

ba, u} and By, — By = {u}, nodes is required to estimate the proximity to beacon nadm
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order to US€ETY,.

The above issue can be resolved as follows. Nodemputes the proximity to node, with
the help of a setB, of nodes whose hop-counts to both nodeand s are less thari, (e.g.,B
= {by, by, b3, 51} in Fig. 4). As each node,; € B has the proximities from itself to both nodes

uwands fori =1,---,|B|, the proximityp,, can be approximately obtained as

If node s needs the geographic distances to the other beacon nodestlje. beacon nodi)

for lateration, it repeats the above approach to the others.

C. Lateration Algorithm

After (P6) is performed, each sensor node obtains the et its geographic distances to
beacon nodes. A lateration algorithm is required to deteentine location of the sensor node.

We consider the following lateration algorithms:

o (L1) Linearized model based method [3]: A linear system isvee by linearizing the
the Euclidean distance equations with resped friori location estimate. The location is
later corrected by a least square solution of the linearegysiThis correction process is
iteratively performed by updating the linear system with tiew location estimate.

« (L2) Descent gradient method [7]: The descent gradient aekthith a constant step size

« is applied to minimize the objective function
M

£= % > (dai — 1)

=1
« (L3) Non-iterative multilateration [4], [20]: For the quedic version of the Euclidean
distance equations, a linear system is derived by subtiaane of the equations from
the other equations. The location estimate is given by thst lequare solution of the linear
system.

Through simulation studies, we observe that (L1) givestikedly accurate estimates, but
requires an initial guess of the location. The performaricthe descent gradient method (L2)
is susceptible to the step size the selection of which is not a trivial issue. A large stexesi
causes divergence (especially for a large number of beaodesh, while a small step size

causes slow convergence. Non-iterative multilateratic®) (equires neither a judicious guess of
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10

(a) Topology.A (b) Topology B

Fig. 5. Resulting network topologies after power controhgplied to Topologiesd and 5 in Fig. 1.

the initial location nor the time-consuming iteration pees. However, its performance is more
susceptible to the measurement noise than the others. Asuli, e use the linearized model
based lateration (L1) to determine the location of a senedenwith the initial location set to

the location of the beacon node that is closest (in terms@g#timated Euclidean distance) to

the sensor node.

VI. EXPERIMENTAL RESULTS

To evaluate the localization performance of PDM, we havedaoted a simulation study. We
compare the performances of DV-hop (DV-distance), MDS-nzaqul the proposed PDM-based
method in the network configurations depicted in Figure lteNbat unlike DV-hop and PDM,
MDS-map requires the global information between all theseemodes. We consider two sets
of scenarios according to how the proximity information i#aoned:

(A) the proximity information is gathered by packet floodi(fection V-A); and

(B) power control is first applied so that each sensor nods doé transmit with the maximal
transmission power, but instead an adequate transmissigargange to maintain network
connectivity. As a result, different sensor nodes may hafferdnt radio ranges. Moreover,
the proximity information is disseminated via unicaststfte other beacon nodes; Section V-

B), rather than packet flooding.
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Figure 5 depicts the resulting network topology after poa@mtrol has been applied to Topolo-
gies A and B. In this set of scenarios, as each sensor node has a diffexéiat range, the
product of the hop-count and the radio range is no longer pgorestimate of the geographic
distance. This implies that the relationship between thegggphic distance and the proximity
is more complicated in this scenario than in scenario A.

In each experiment, two types of proximity are consideréd: Hop-count and the estimated
geographic distance between sensor nodes (obtained fremeteived radio signal strength).
Also, the following error index is used to quantify the estion error:

XS falxiixg)
(M+N)2u ’

where M + N is the total number of sensor nodes.

Ep

A. Results for Scenario A

Effect of radio ranges on localization accuracy First we investigate the effect of radio
ranges (or equivalently how well the network is connected)tloe localization accuracy in
isotropic (Topology.4) and anisotropic (Topology) networks. If sensor nodes are uniformly
distributed in a square area and well connected, the netisatinsidered to be isotropic. Figure
6 (a) and (b) depict the average location errors in isotropiwvorks (Topology4). PDM gives
the smallest estimation error under all cases. DV-hop pmdoas well as PDM when sensor
nodes are well connected ¢ 1.4u). If the hop-count is used as the proximity measure (Fig. 6
(a)), the performance of all three methods (in terms of estion accuracy) slightly deteriorates
as the radio range increases. This is because the proxsratypressed as coarser integer values.
On the other hand, if the estimated geographic distanceed as the proximity measure (Fig.
6 (b)), the performance improves as the radio range incse&sgure 6 (c) and (d) depict the
average location errors in anisotropic networks (TopolByyThe estimation error of PDM is,
respectively, half and one-third of that of MDS-map and Dgh

Effect of the number of beacon nodes on localization accurgc Second we investigate
the effect of the number of beacon nodes on the localizatonracy in isotropic (Topology)
and anisotropic (Topologie8 andC) networks. We vary the number of beacon nddefrom 4

to 30. In the case ofif = 30, the ratio of beacon nodes to the total number of sensdds<lp.
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Fig. 6. Localization errors versus radio ranges{ r < 2u), when the number of beacon node is 10. The x-axis is the numbe

of neighbors (as changes fromu to 2u).

Figure 7 gives the localization errors when the hop-countsisd as the proximity measure.
In the case of isotropic networks (Topologd), if the radio range is large enough to provide
strong connectivity, (e.gx = 1.3u in Fig. 7 (b)), DV-hop and PDM give almost the same
performance. In the case of anisotropic networks (Tope®fiandC), DV-hop and MDS-map
perform comparatively worse than PDM (Fig. 7 (c)—(f)).

Figure 8 gives the localization errors when the estimatedlié®an distance is used as the the
proximity measure. As compared to Fig. 7, the performancallothree methods significantly

improves, and PDM gives the smallest estimation errors.
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Fig. 7. Localization errors versus the ratio of beacon nodiée hop-count is used as the proximity metric.
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Fig. 9. Localization errors versus the ratio of beacon npdd®n beacon nodes are not uniformly distributed. The tesi

beacon nodes is either linearly increasing (left columnjlecreasing (right column) with respect to the x-axis. Thp-bount

is used as the proximity metric.
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Effect of the non-uniform distribution of beacon nodes on l@alization accuracy Third
we investigate the effect of the non-uniform distributidrbeacon nodes in isotropic (Topology
A (r = u)) and anisotropic (Topolog¥ (r = u) andC (r; = u, r» = 1.3u)) networks. In order to
obtain the non-uniform distribution of beacon nodes, weosled/ beacon nodes from sensor
nodes according to a probabilips, which either linearly increases or decreases with reqpect
the x-axis, i.e.p, = 212/ Tmaz OF pp = —21y(T/Timae — 1), Wherery,, z, andx,,,, are the ratio
of beacon nodes to sensor nodes, the x coordinate value feleetesd node, and the width of
sensor network area, respectively.

Figure 9 gives the localization errors when the beacon nogl@an-uniformly distributed. As
the hop-count is used as the proximity metric, the locatioore can be compared with those
for the uniform distribution in Fig. 7 (a), (c), and (e). In ga@ogy A, the location errors for
DV-hop is the smallest when the density of beacon nodes aseewith respect to the x-axis
in Fig. 9 (a). This is because the deployment of the sensoes@slightly denser in right half
plane as shown in Fig. 1 (a). MDS-map and PDM give almost theegaerformance regardless
of the distribution of beacon nodes. In Topologig#andC, the accuracy of DV-hop is apparently
affected by the distribution of beacon nodes. The locabmaérrors of DV-hop for Topologies
B andC are the smaller in Fig. 9 (d) and (e) than in Fig. 9 (c) and @spectively. Moreover,
the errors are even smaller than those in the case of theromddstribution in Fig. 7 (c) and
(e), respectively. This implies that the locations of beanodes for DV-hop should be carefully
determined so as to gather topological information acelyatn contrast, we observe that the
performances of MDS-map and PDM are less sensitive to thehldison of beacon nodes in
both isotropic and anisotropic networks.

In summary, DV-hop (DV-distance) gives accurate estimafegeographic locations only in
isotropic networks with high connectivity. MDS-map givestter performance than DV-hop (DV-
distance) in Topology3, perhaps due to the fact that the two eigenvectors obtaigell DS
capture principal components of anisotropic propertidSMPachieves the best performance
consistently. As the radio range and the number of beacoeswe@ larger than certain thresholds,

the estimation errors for PDM fall below Q.3under all cases.
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B. Results for Scenario B

Effect of the number of beacon nodes on localization accurgc Figure 10 shows the
localization errors when the hop count is used as the proximeasure. We vary the number of
beacon noded/ from 4 to 50. In the case o/ = 50, the ratio of the number of beacon nodes
to the total number of nodes is 0.2. As shown in Fig. 10 (a),est@mation errors for DV-hop
and MDS-map are quite large and decrease slowly as the nuofii®acon nodes increases.
The estimation errors for PDM are much smaller and decreasterfas the number of beacon
nodes increases. This implies that PDM can capture the dgmall features in the case of low
connectivity (as power control has been applied). We oles#rat the error falls below 1 and
0.5 for M > 14 (ratio = 0.056) and 41 (ratio = 0.164), respectively. 1g.Fi0 (b), DV-hop
and MDS-map do not show performance improvement wher- 25 (ratio = 0.1), while PDM
gives almost the same improvement as that in Fig. 10 (a).

In summary, it is more difficult to extract the geographimimhation from proximity measure-
ments, after sensor nodes exercise power control and timorketonnectivity becomes lower.
Even under the case, PDM makes accurate location estimasidang as the ratio of beacon

nodes exceeds a certain threshold.

February 8, 2005 DRAFT



27

VIlI. CONCLUSION

In this paper, we have designed and evaluated a new PDM-Hasatization method in
anisotropic sensor networks. We represent the measurednpties and the geographic dis-
tances in Lipschitz embedding spaces, and devise a tramsfion method that projects the
coordinates in the embedding space built on proximities thie geographic distance space.
The transformation matrix accurately characterizes amipa network topologies because it
retains the components of proximities to the beacon nodedl idirections. We show that the
transformation can be obtained by using the truncated S\Hugsinverse technique even in
the presence of measurement noises. Finally, we show vialation that the proposed PDM-
based method outperforms DV-hop, DV-distance [3], and Mg [10], and makes robust and
accurate estimates of sensor locations in both isotropicasmsotropic sensor networks.

Recall that in Section V-B, we state that if the number of lo@acodes is sufficiently large,
each (beacon or non-beacon) node can measure its proxdruotia subset of beacon nodes by
unicast probing. The criteria for correctness are (1) all flieacon nodes in a subset unicast
their probing packets to one another; and (2) an unknown obt&ns the proximity-distance
map (PDM) from one of the beacon nodes in the same subset. iAsfpaur future work, we
will investigate how to decompose the set of beacon nodeas sabsets, so that proximity
measurements among beacon nodes in each subset are dufficieapture the anisotropic

characteristics of the entire sensor network.
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