
1

Identifying Lossy Links in Wired/Wireless
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Abstract

In this paper, we consider the problem of estimating link loss rates based on end-to-end path loss

rates in order to identify lossy links on the network. We firstderive a maximum likelihood estimate

for the problem and show that the problem boils down to the matrix inversion problem for an under-

determined system of linear equations. Without any prior knowledge of the statistics of packet loss rates,

most of the existing work uses the minimum norm solution for the under-determined linear system. We

devise, under the assumption that link failures are abnormal events in real networks and lossy links are

sparse among all the internal links, an iterative algorithmto identify non-lossy links and to remove the

corresponding terms from the under-determined linear system. To identify non-lossy links, we propose

to use three different criteria (and a combination thereof): the criterion determined by a basis selection

technique, that obtained by sorting path loss rates, and that determined by the minimum norm least

square solution. We show via simulation and empirical studies on the MITRoofnettraces that the

computational complexity of the iterative algorithm is comparable to that of the minimum norm least

square approach, and that the solution obtained under the iterative algorithm achieves high coverage of

lossy links, while incurring only a small number of false positives in various network scenarios.
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I. INTRODUCTION

Fundamental network characteristics such as the network delay and the packet loss rate provide

important information on the operational conditions of a network. They are also highly correlated

to events perceived by network operators and end users. Acquiring network characteristics for

internal links is, however, quite difficult, due to the fact that most core routers and switches

do not support direct access to the links. They are usually inferred by observing and analyzing

end-to-end measurements, the techniques of which are usually termed asnetwork tomography.

For example, the network delay experienced at each router can be inferred by using the routing

information (available in the routing table) and the end-to-end measurements of paths delays.

Indeed most network tomography techniques are grounded on mathematical inference that esti-

mates the source signal of interest (i.e., network characteristics of internal links) with a set of

sampled observations (i.e. end-to-end measurement data).

Network tomography has received significant attention. According to the way in which mea-

surements are made, existing work can be roughly classified into those that send multicast packets

to probe the network [2], [14], those that send unicast packets to probe the network [3], [6],

[8], [10], [13], [16], and those that employ passive approaches to monitor data traffic (without

sending probing packets) [12], [13], [16]. Various mathematical techniques such as maximum

likelihood estimation (MLE) [2], [7], expectation-maximization (EM) [6], [16], and Bayesian

inference [12], [13], [15] have been exploited as the inference base for network tomography.

One of the major challenges in all the aforementioned network tomography problems is that the

mapping from the observed measurements to the corresponding link-level characteristics cannot

in general be uniquely determined [5]. One has to utilizeadditional statistical information on

the link-level characteristics. For example, in the case that unicast is used to probe the network,

the number of measurement paths is generally smaller than that of internal links. As a result, the

statistics obtained by measuring end-to-end path characteristics is not sufficient to uniquely

determine the link-level network characteristics. To obtain additional statistical information,

several measurement methods, such as those in [6], [10], send back-to-back packet pairs and

exploit the conditional probability of packet transmission. Zhanget al. [23], on the other hand,

exploit statistical independence to estimate the traffic matrix between origin and destination pairs.

In this paper, we consider the problem of inferring packet loss rates of internal links and
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identifying lossy links given a set of end-to-end measurements of path loss rates (and the

routing information). We first derive a simple maximum likelihood estimate (MLE) to this

problem, and show that the problem essentially boils down tosolving an under-determined

system of linear equations (that characterizes the relationship between link loss rates and path

loss rates). We would like to stress that, although similar network tomography problems have

been considered in the form of an under-determined system, this is the first effort to show that

MLE is implied in the under-determined linear system. While most existingwork [3], [13] uses

the minimum norm solution as the solution to this under-determined linear system, we show that

there is room for further improvement. We exploit the statistical observation that lossy links are

sparse in real operational networks and formulate a new optimization problem that minimizes the

number of lossy links, subject to satisfying the under-determined linear system. This statistical

observation has been corroborated by empirical studies in [3], [21], in which the authors showed

the distribution of the packet loss rate is centered near zero even though it has a wide range.

The sparsity property of lossy links has also beenimplicitly used in [8], [13] in its design of

the inference algorithm (in a different context).

Finding an optimal solution to the optimization problem that minimizes the number of lossy

links, subject to the under-determined linear system is NP hard and requires combinational search

[4]. We propose an iterative algorithm to solve the optimization problem by identifying non-lossy

links and pruning columns that correspond to non-lossy links from the matrix that characterizes

the under-determined linear system. The process of identifying non-lossy links is performed

using three different criteria (and a combination thereof)determined by three different methods:

basis selection, sorting of path loss rates, and solving theminimum norm least square problem.

We show via simulation and empirical studies on the MITRoofnettraces that the sparse solution

obtained under the iterative algorithm achieves highcoverageand incurs a small number of

false positivesunder various network scenarios. Here the coverage is defined as the ratio of the

number of links correctly identified to be lossy to that of real lossy links, and a false positive

occurs when a non-lossy link is incorrectly identified to be lossy.

The rest of the paper is organized as follows. In Section II, we infer link loss rates based

on maximum likelihood estimation (MLE) and show that the problem essentially boils down to

solving an under-determined linear system. In Section III,we give a summary of related work

in the literature, and motivate the need for our work. In Section IV, we validate the assumption
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that lossy links are sparse in real operational networks, and propose an iterative algorithm to

solve the new optimization problem that minimizes the number of lossy links, satisfying the

under-determined linear system. Following that, we present in Section V and VI our simulation

and experiment studies that evaluate the proposed iterative algorithm in terms of computational

overhead, coverage (i.e., the number of correctly inferredlossy links), and false positives (i.e.,

the number of incorrectly inferred lossy links). Finally, we conclude the paper in Section VII.

II. PRELIMINARIES

The network tomography problem considered in the paper is toinfer the link loss rates in

a network by observing the end-to-end path loss rates between end hosts. The packet loss rate

is defined as the ratio of the number of successfully transmitted packets to the total number of

packets during a measurement interval. Note that packet loss rates dynamically change over time

and cannot be simultaneously measured at all the links, and hence for problem tractability, we

focus on the first-order statistics of packet loss rates. Theassumption of stationary behavioral

characteristics over a measurement interval has been corroborated by rigorous, empirical studies

given in [3], [13].

A. Problem Formulation Based on Maximum Likelihood Estimation

Consider a networkN that consists of a setL of unidirectional links indexed byl =

1, · · · , |L|
△
= n and a setS of source-destination directed paths indexed bys = 1, · · · , |S|

△
= m.

Here | · | denotes the cardinality of a set.

Each paths is composed of a setL(s) ⊂ L of links. The setsL(s), s ∈ S define anm-by-n

routing matrixA whose elements are

asl =







1, if l ∈ L(s),

0, otherwise.

This routing matrixA can be obtained by several techniques based on ’traceroute’and is assumed

to be given in this paper.

Under this network model, we infer link loss rates based on maximum likelihood estimation

(MLE) and show that the problem essentially boils down to solving an under-determined linear

system. Letts andfs denote the numbers of received and lost packets along a paths, respectively.
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Then, the observation data set is defined asO =
⋃

s∈S (ts, fs). Let the set of link loss rates to

be estimated be denoted asP = {p1, · · · , pn}, wherepl is the loss rate at linkl.

Under the assumption of a Bernoulli loss process, the likelihood function for a single obser-

vation can be written as

Pr(O|P ) =
∏

s∈S

(1− ps)
tspfs

s , (1)

whereps is the loss rate of paths and can be expressed as

ps = 1−
∏

l∈L(s)

(1− pl). (2)

By taking logarithms on both sides of Eq. (1), we have

ln Pr(O|P ) =
∑

s∈S

[ts ln(1− ps) + fs ln(ps)]

=
∑

s∈S



ts
∑

l∈L(s)

xl + fs ln



1−
∏

l∈L(s)

exl







,

wherexl = ln(1− pl). In the matrix form, the log-likelihood function can be expressed as

ln Pr(O|P ) = tTAx + fT ln
(1m − eAx

)

, (3)

where the column vectors ofx, t, and f are defined asx = [x1, · · · , xn]T , ,t = [t1, · · · , tm]T ,

and f = [f1, · · · , fm]T , respectively, and1m ∈ Rm is the 1’s column vector .

By replacing the variabley = Ax in Eq. (3) and differentiating it with respect toy, we have

∂ lnPr(O|P )

∂ys

= ts − fs

eys

1− eys

.

Setting the above equation to zero, we obtain the value ofys that maximizesln Pr(O|P ):

ys = ln(
ts

ts + fs

) = ln(1− ps) for s ∈ S.

Thus the maximum likelihood estimate ofx is the solution of the following linear equation:

y = Ax. (4)

Alternatively, the system of linear equations in Eq. (4) canbe obtained by taking logarithms

on Eq. (2):

ln(1− ps) =
∑

l∈L(s)

ln(1− pl) =
∑

l∈L

asl ln(1− pl),

June 10, 2007 DRAFT



6

and

ys =
∑

l∈L

aslxl,

which leads toy = Ax.

In summary, the problem of inferring link loss rates,{pl | l ∈ L}, based on maximum

likelihood estimation with the likelihood function Eq. (1), eventually boils down to solving the

system of linear equations in Eq. (4). If the system of linearequations is under-determined, MLE

has an infinite number of solutions.

B. Solving Under-Determined Linear Equations

The tomography problem can be stated as follows: Given a routing matrix A and the packet

loss rate,y ∈ Rm, measured by end hosts on an end-to-end basis, infer the packet loss rate of

each linkx ∈ Rn such thaty = Ax. As a special case, ifA is a square matrix with full rank,

then there exists an inverse matrix ofA, and we have a unique solution ofx = A−1y.

In general, the number,n, of links is larger than the number,m, of paths measured end-to-end,

and the number of unknown variables is larger than that of linear constraints. That is,y = Ax is

under-determined, and may have an infinite number of solutions. For example, in a server-client

measurement scheme, a tree rooted at the server is constructed with all the clients as leaves.

The number of links is usually larger than that of paths in thetree. In an overlay network of

k nodes, although the number of paths,k2, is larger than the number of links, as reported in

[3], the rank ofA is not proportional tok but is much smaller than the number of links. As

a result, the linear system is usually reduced to a smaller under-determined linear system (with

full ranks) by selecting measurements onindependentpaths.

To solve such an under-determined linear system, it is necessary to impose additional condi-

tions for selecting a solution. One possible criterion (that has been widely used) is to select the

solution that renders a minimalLp norm. For example, ifL2 norm is used as the criterion, the

problem can be written as

minimizexTx (5)

subject toAx = y,

and the optimizerx∗ is called theminimum norm solutionof the undetermined system.
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If A is full rank (i.e., m = rank(A) and m < n), there exists an inverse matrix ofAAT ,

and the optimizer can be shown to bex∗ = AT (AAT )−1y. Here,AT (AAT )−1 is the (right)

pseudo-inverse matrix ofA. On the other hand, ifA is rank deficient (i.e.,m > rank(A)),

AAT is singular, and theminimum norm least square solutioncan be obtained by singular value

decomposition (SVD) [11]. Let the singular value decomposition of A be expressed as

A = U ·





Σ 0

0 0



 ·VT , (6)

whereU andV are column and row orthogonal matrices:

U = [u1, · · · ,um],

V = [v1, · · · ,vn],

Σ is a diagonal matrix:

Σ = diag(σ1, · · · , σW ),

the subscriptW is the rank of the matrixA, andσi’s are singular values ofA in the decreasing

order (i.e.,σ1 ≥ · · · ≥ σW > 0). Then the matrixA+ is defined as

A+ = AT (AAT )−1 = V ·





Σ−1 0

0 0



 ·UT

=
W

∑

i=1

1

σi

viu
T
i . (7)

With the use ofA+, the solution to Eq. (5) is simply expressed asx∗ = A+y in the rank

deficient case.

In summary, as the problem in Eq. (4) has infinitely many solutions, the minimum norm solu-

tion has been widely used. However, we will show in subsequent sections that with exploitation

of the sparsity characteristics of lossy links, it is possible to devise better solutions than the

minimum norm solution.

III. RELATED WORK

Network tomography has recently received significant attention, and can be broadly classified

into two categories according to the network characteristics to be inferred and estimated [5]:

(i) link-level parameters, such as the link delay and the link loss rate, based on end-to-end,
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path-level measurement [2], [3], [6], [8], [10], [13], [14], [16], and(ii) path-level traffic intensity

based on link-level measurements [15], [17], [22], [23]. Research efforts in the former category

can be further classified, based on the mechanisms with whichmeasurements are made, into

multicast probing-based [2], [14], unicast probing-based[3], [6], [8], [10], [13], [16], and passive

monitoring [12], [13], [16]. They can also be further classified based on the structure of paths

that connect the probe packet senders and receivers, such astrees and/or meshes.

The network tomography problem considered in this paper is to estimate the packet loss

rates of internal links based on end-to-end, path-level measurements and does not make any

explicit assumptions on the measurement method or the connection structure. In what follows,

we summarize several works that are most closely related to ours.

Coates and Nowak [6] proposed a back-to-back packet pair measurement scheme to collect

more informative statistics for link loss inference in a single source, multiple-receiver network.

The method exploits the conditional success probability ofthe second packet as the additional

constraints in the loss inference problem. Harfoush [10] also used the packet pair probing

technique for determining whether a pair of connections from the same source experience shared

losses.

Padmanabhanet al. [13] presented a server-based inference framework that does not inject

active probing packets into the network, but instead exploits existing traffic traces observed at a

HTTP server to infer link characteristics. To infer the linkloss rates on the paths between the

server and its clients, they proposed three methods: randomsampling, linear optimization, and

Bayesian inference using Gibbs sampling. The latter two methods are reported to give better

performance but are computationally more expensive. The linear optimization method minimizes

the cost function of‖x‖1 subject toAx = y. An optimization problem of this type is called

the minimum fuelproblem, and the minimum norm solution obtained under this formulation

usually gives a solution with a smaller number of non-zero entries than that obtained in Eq. (5)

(based on theL2 norm) [4]. With the use of the likelihood function of (1), theBayesian inference

method uses Markov Chain Monte Carlo (MCMC) with Gibbs sampling to solve the problem and

outperforms the others. However, due to its computation complexity, it is practically impossible to

apply the Bayesian inference method with Gibbs sampling to alarge-scale tomography problem.

Chenet al. [3] focused on how to reduce the measurement overhead in a monitoring system

for overlay networks. An algebraic approach has been proposed to select and monitor onlyk
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linearly independent paths in an overlay network withn end hosts, while fully describing all

the n2 paths (k ≈ n log(n) for a reasonably largen). The loss rates on the paths not selected

can be inferred by the estimates for the links on the selectedand independent paths. While the

overlay network is characterized by an over-determined linear system, the linear system obtained

by pruning linearly dependent paths becomes under-determined with full rank. The authors then

used the QR decomposition to compute the minimum norm solution.

By exploiting the sparsity characteristics of lossy links,Duffield [8] proposed a simple rule-

based algorithm to infer the link that performs worst. The proposedsmallest consistent failure

set(SCFS) rule designates as lossy only those links that are nearest the root and consistent with

the observed pattern of lossy paths. SCFS incurs much less computational complexity, and yet

renders performance comparable to that of the linear optimization method given in [13].

Zhanget al. [23] considered the network tomography problem that estimates and infers the

traffic matrix (i.e., the volume of traffic between several origin and destination pairs) from

link measurements. They introduced the notion ofregularization of ill-posed problems(i.e.,

solving under-determined linear equations such as that defined in Eq. (4)), and proposed to

exploit statistical independence of network traffic between origin and destination pairs and to

minimize mutual information between them. They proposed anestimation method, calledMMI,

and showed that as compared to the minimum norm solution, MMIrenders more accurate and

robust estimates.

In summary, while the minimum norm solution has been usuallyused (such as in [3], [13])

as a solution in the absence of other additional information, it has been shown in [8], [23] in

a different problem setting that with additional information as side constraints, the resulting

solution could be made more accurate and robust. In the next section, we will leverage the

fact that lossy links are usually sparse in real networks, and devise a solution algorithm to the

under-determined linear system.

IV. ESTIMATION OF L INK LOSSRATES USING THE SPARSITY CHARACTERISTICS OFLOSSY

L INKS

In this section, we first investigate whether or not the assumption that lossy links are sparse

is reasonable. Then we exploit the sparsity characteristics of lossy links (i.e., there exist only a

small number ofxl’s whose values differ significantly from zero in real networks) to reduce the
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Fig. 1. Cumulative percentages of packet loss rates in Internet and wireless mesh network.

number of unknown variables inx, and devise (under the sparsity assumption) an algorithm that

computesx in Eq. (4). By identifying links whose loss rates are likely to be zero and forcing

the corresponding estimates to be zero, we obtain a new system of linear equations with matrix

Ar, whereAr is reduced from them-by-n matrix A.

A. Validation of the Sparsity Characteristics of Lossy Links

The first issue we address is whether or not lossy links are indeed sparse. Many empirical

studies have showed that packet loss rates of end-to-end paths are usually close to zero even

though their distribution has a wide range. For example, Zhang et al. [21] obtained packet loss

traces between 31 hosts by using the NIMI measurement infrastructure in 2000. An analysis on

these traces showed that 11-15 % of the traces incurred no loss, 47-52% incurred loss rates of

0.1%, 21-24% incurred loss rates of 0.1-1.0%, 12-15% incurred loss rates of 1.0-10%, and only

0.5-1% incurred loss rates exceeding 10%. Chenet al. [3] measured packet loss rates between

51 hosts in the PlanetLab testbed in 2003 and reported that 95.9% of paths had loss rates of

0-5%.

We obtain the data sets of loss rates (measured on July 29, 2004) from the Active Measurement

Project (AMP) at National Laboratory for Applied Network Research (NLANR). Fig. 1 (a)

depicts loss rates measured at three monitors located at Univ. of California at Berkeley, University

of Illinois at Urbana Champaign, and Univ. of Massachusetts, to the other 128 AMP monitors.

In line with the reports given in [3], [21], we observe that 88% of the 384 paths incur small
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loss rates (less than 1%).

As the loss rates of links on a path are not larger than that of the path (i.e., fork ∈ L(s),

pk − ps = −(1− pk)(1−
∏

l∈L(s),l 6=k(1− pl) ≤ 0 ), a non-lossy path contains no lossy link. As

a result, based on the reports given in [3], [21] and our own analysis (of data traces available at

NLANR), we conclude that a majority of links have nearly zeroloss rates and lossy links are

quite sparse in real wired networks.

We also obtain data traces measured on a 38-node urban 802.11b mesh networkRoofnet[1].

With the packet loss traces measured at different transmission rates of 1, 2, 5.5, and 11 Mb/s,

we construct network topologies spanning the whole wireless nodes with the use of the traces

of received signal strengths. Fig. 1 (b) depicts the loss rates incurred on the links of the network

topologies, which are constructed at different transmission rates. We observe that, although the

link loss rates are much larger than those incurred in wired networks (Fig. 1 (a)), still 50 % of

the logical links incur loss rates of less than 1 %, and 80 % of them incur loss rates of less than

10 %. That is, even in a typical wireless mesh network, the link loses are sparseenough.We

will exploit this characteristics in estimating link loss rates.

B. Overview of Our Solution Approach

Based on the sparsity characteristic of lossy links, we propose to computex by solving the

following optimization problem:

minimize 1T
n sign(−x) (8)

subject toAx = y, xl ≤ 0 for l ∈ L.

The cost function in Eq. (8) gives the number of nonzero entries ofx. While the minimum norm

solution of Eq. (5) has the tendency to spread the loss rates among a number of links, the sparse

solution obtained in Eq. (8) will only assign non-zero termsto a small number of links, subject

to the constraint.

Consider the scenario in which there exists one lossy link along a path. The minimum norm

solution would assign non-zero and (relatively) small lossrates toseveralnon-lossy links on the

lossy path. This leads to an increase in the number of incorrectly inferred lossy links (termed as

false positives). On the other hand, if there exist two or more lossy links on apath, the solution

given in Eq. (9) may assign a high loss rate to only one of them.This leads to a decrease in the
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number of correctly inferred lossy links (termed ascoverage). With the sparsity characteristic

of lossy links, we expect that such cases occur rarely.

The optimization problem given in Eq. (8) is closely relatedto the best basis selection problem,

in which a proper subset of vectors is chosen from the over-complete representation of a signal

[4]. In other words, the best basis selection problem is to select a few columnsai’s of the

matrix A that best represent the measurement vectory in Eq. (4). Finding a smallest basis set of

vectors is NP hard, and requires combinatorial search [4]. To this end, we propose a suboptimal

method to compute a sparse solution for the optimization problem in Eq. (8).The key operation

is to identify non-lossy links and to reduce in a step-by-step manner the dimension of the system

of linear equations, by eliminating identified non-lossy links until‖Ax− y‖ reaches its minimum

value. The process stops when reducing the dimension of the set of linear equations does not

further minimize‖Ax− y‖.

Fig. 2 gives the proposed algorithm. It starts after pruning(n −m) non-lossy links because

the rank ofA is less than or equal tom. Then in each iteration,∆i more non-lossy links are

inferred. The procedure of assigning weights and identifying non-lossy links in steps 1–2 is

carried out by using the three criteria to be given in SectionIV-C. Once a link is identified as

a non-lossy link, its loss rate is set to zero, regardless of its computed loss rate. The loss rates

of the reduced set of linear equations are then computed by the truncated SVD technique given

in Section IV-D.

There are several possible refinements that can be made to further improve the efficiency of

the algorithm given in Fig. 2:(i) once a link is identified to be non-lossy, it is excluded in

subsequent iterations; and(ii) the rankings of links are not recomputed in every iteration;only

those of remaining links are required to be updated.

C. Classifying Links into Lossy and Non-lossy

We consider three methods in selecting non-lossy links (i.e., the links whose loss rates are

likely to be zero). Based on the outcomes of these methods, wethan assign rankings to links,

with lower rankings assigned to non-lossy links. The rankings are integer values in the range of

1 andn. Given the rankings of a link computed in the three methods,w1, w2, andw3, we then

assignw = max (w1, w2, w3) as the final ranking for the link. The values ofw’s are used to

determine whether or not the corresponding links are non-lossy. If a link is identified as a lossy
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// The number of inferred non-lossy links is increased by∆i in each iteration

i← (n−m) // i is the number of non-lossy links

min result←∞

WHILE i < n

1. Compute the rankings of links according to the criteria tobe discussed in Section IV-C.

2. Identify non-lossy links whose rankings are in the range of [1, · · · , i] and assign

zero loss rates to them.

3. Obtain the reducedm-by-(n− i) matrix Ar by taking columns corresponding to

the remaining links.

4. Compute the solution for the reduced linear system using the truncated SVD technique

given in Section IV-D.

5. Assign the solution obtained in step 4 to the remaining links.

6. Compute‖Ax− y‖. If ‖Ax− y‖ < min result, result← x.

7. i← i + ∆i.

END

result contains the link loss ratesx that gives

the minimum‖Ax− y‖.

Fig. 2. Iterative algorithm that computes the sparse solution for the optimization problem in Eq. (8).

link based on a criterion, it is identified as a lossy link regardless of the decisions based on the

other criteria because the final ranking is determined by themaximum value of the rankings.

Criterion I — Selecting Bases: We use the solution to the best basis selection problem

[18], [24], [25], which aims to find a sparse solution with less thann nonzero entries. Note that

y can be expressed by using the column vectors ofA:

y =
n

∑

l=1

xlal = x1a1 + · · ·+ xnan,

whereal is the lth column vector ofA. By solving the best basis selection problem, we can

select the non-zero column vectors ofA to best represent the measured vectory in Eq. (4). The
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selected column vectors correspond to lossy links with non-zero loss rate,

Among a number of algorithms for best basis selection, we usethe simplest method based

on the projection technique [18], [24], [25]. Suppose that only thekth link amongn links has a

non-zero loss rate, i.e.,xk 6= 0 andxl = 0 for l 6= k. Then,y is collinear with thekth column of

A, and we havexk = aT
k y/aT

k ak. Even thoughxl’s are not exactly zero forl 6= k, xk will have

a larger value than the others with a high probability. Therefore, in the case that only one lossy

link exists, we can identify a lossy link as the one that maximizes the normalized projection on

each column ofA, i.e., thekth link is identified as a lossy link, if

k = arg max
i

|aT
i y|

aT
i ai

for i = 1, · · · , n. (9)

Whenp lossy links are to be identified (Fig. 2), we retainp links whose corresponding column

vectors ofA render the firstp largest normalized projections ofy, and declare the other links

as non-lossy. The reduced matrixAr is thus composed of thep columns ofA associated with

the selectedp links.

Criterion II — Sorting Path Loss Rates: If a path contains a lossy link, then its path loss

rate is likely to be larger than that of paths without any lossy link. On the other hand, if there is

no lossy link on a path, the loss rate of the path would be zero.In such a case, we can identify

the non-lossys links on the path and prune them in the next iteration. Thus, we determine the

ranking of a link based on the loss rate of the path(s) that thelink belongs to.

First, the rankings of paths are computed according ot the path loss rates. We assign a (low)

ranking of ”1” to the links on a path with the minimum path lossrate. Then, the ranking of a

link is determined by that of tha path that the link belongs to. As a link may belong to multiple

paths, the ranking of a link is computed by taking the minimumvalue of rankings obtained at

multiple paths. Note that at least one path including a specific link has almost zero loss rate of

path, it means the link is not a lossy link. Specifically, let the set of linear equations of Eq. (4)

be sorted in an ascending order with respect toy, (i.e., ys < ys+1 ≤ 0 for 1 ≤ s < m). We

computeα(l)
△
= min S(l) for l ∈ L, whereS(l) is the set of the indices of the paths which

link l traverses. For example, if a linkl belongs to the ordered, multiple paths of 1, 3, and 5,

S(l) = {1, 3, 5} andα(l) = 1. The rankings of linksw2’s can then be determined according to

α(l)’s. Note that once the values ofα(l) are computed, they need not be computed in subsequent

iterations. Instead, only the rankings (for the lossy linksthat remain in each iteration) have to

June 10, 2007 DRAFT



15

be updated.

In spite of its low computational overhead, this ranking mechanism does not reflect whether

or not a link is lossy under several cases. Even though a link exists on a path with the minimum

path loss rate, it may be lossy. Consider, for example, a tree-like network topology with a lossy

link connected to its root node (i.e., measurement server).As every path includes the link, the

link has the ranking of ”1” and could be identified to be non-lossy. For this reason, the rankings

w2 will be used in conjunction with those obtained in the other methods. As we use themax

function to calculate the final composite rankings, the above false positive case can be readily

avoided.

Criterion III — Using the Minimum Norm Least Square Solution : Recall that in each

iteration in Fig. 2, we compute the solution for the reduced linear system (Step 4). We may use

the solution obtained in Step 4 to determine the link rankings w3 to be used in the next iteration.

The links with small loss rates are assigned low rankings.

Summary: Use of different combinations of the criteria helps to identify the combinations

that are robust and less susceptible to measurement errors and numerical computation errors.

Through our extensive studies, we find that the combination of Criteria II and III gives the

best results, and will henceforth use it in the simulation study. However, as the computation of

SVD is quite expensive (N3), we use the combination of Criteria I and II to obtain the reduced

m-by-m matrix Ar in the first iteration of Fig. 2 without computing SVD of the original and

large matrixm-by-n matrix A.

D. Computing Link Loss Rates

As the reduced matrixAr is usually rank deficient, we estimate the loss rates of lossylinks by

computing the minimum norm least square solution via the SVDtechnique. In this subsection,

we elaborate on the SVD technique used to compute the pseudo-inverse ofA in Section II-B.

One issue that has to be carefully addressed is that the measurement of path loss rates is highly

susceptible to noises resulting from various factors (suchas the burstiness in packet losses),

and the noises thus introduced in the measurement may seriously impair the accuracy of the

calculation results. This is due to the fact that the terms inEq. (7) contains reciprocals of small,

near-zero singular values.
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To reduce such undesirable effects, we use thetruncated pseudo-inversemethod described in

[9], in which small singular values are simply discarded by truncating the terms at an earlier

index γ < W. That is, instead of usingΣ in Eq. (7), we use

Σγ = diag(σ1, · · · , σγ),

and the truncated pseudo-inverse ofA can be written as

A+
γ =

γ
∑

i=1

1

σi

viu
T
i . (10)

While truncating higher terms in Eq. (7) reduces the adverseeffect of measurement noises, it

may also result in loss of accuracy. To determine an adequatetruncating indexγ, we use the

following criterion: the percentage accounted for by the first k singular values is defined as

τk =

∑k

i=1 σi
∑W

i=1 σi

.

One may pre-determine a cut-off value,τ ∗ of cumulative percentage of singular values, and

calculateγ to be the smallest integer such thatτγ ≥ τ ∗. We usually setτ ∗ to 0.98.

V. SIMULATION RESULTS

To evaluate the performance of the proposed algorithm in estimating packet loss rates, we have

conducted both a simulation study and an empirical study based on the MITRoofnettraces. We

report the simulation results in this section, and will defer the discussion on the empirical study

in Section VI. We compare the following methods with respectto their capability of inferring

packet loss rates:

(i) Minimum norm least square solution (MNLS): as the routing matrix A is in general a flat

matrix (i.e., m < n) with rank deficiency, we compute the minimum norm least square

solution with the use of SVD in Eq. (7).

(ii) Linear optimization (LINOPT): The linear optimization method proposed in [13] is used.

(Recall that it minimizes the cost function‖x‖1 subject toAx = y.) We obtain its

solution by using the ’fminsearch’ function in Matlab. The maximum number of iterations

is restricted to half of the default value1, due to the prohibitively long time incurred in

computation. We set the starting value as the minimum norm least square solution obtained

1The default value in Matlab is (20 × n).
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in (i). If the starting value is randomly selected, it usually leads to inaccurate estimates

given the specified number of iterations.

(iii) Sparse solutions obtained by the proposed algorithm (SS): We compute two sparse solutions

using the algorithm in Fig. 2, based on the combination of theCriteria II and III used

to assign link rankings (Section IV-C). In Fig. 2, the numberof iterations is equal to

(n − m)/∆i, and its default value is set to twenty. We can control the granularity of

solutions by changing∆i.

We evaluate the above algorithms with respect to thecoverage, the false positive rate, and

the similarity under different network topologies. The coverage is definedas the ratio of the

number of links correctly identified to be lossy to that of real lossy links, and the false positive

rate is defined as the ratio of the number of links incorrectlyidentified to be lossy to that of

the links identified to be lossy. To compute the coverage and the false positive rate, we select

c links with the largest estimated loss rates. Here,c is set to be the number of actual lossy

links in the simulation setting. As we are interested in identifying the most lossy links, it is

appropriate to select thec links with high loss rates and count the numbers of correctlyand

falsely identified links for comparing performances between under MNLS, LINOPT, and SS. If

an inference algorithm tends to give high loss rates to a number of links, it results in both high

coverage and a high false positive rate. On the other extreme, it gives in low coverage and a

low false positive rate. A good inference algorithm should achieve both high coverage and low

false positive rates.

On the other hand, the similarity measure between the actualloss ratex and its estimatêx

obtained by a given algorithm is defined by thecosine distanceas follows:

cos(x, x̂) =
x · x̂

√

(x · x)(x̂ · x̂)
.

The cosine distance is considered as the angle between two vectorsx and x̂. If the vectors are

identical, the cosine distance becomes 1. One may use other measures such as the Euclidean

distance to evaluate the similarity performances. However, as the actual/estimated rates contain

a number of 0’s and only a few non-zero values, a simple sum of estimation errors cannot

effectively reflect the estimation performance.

The topologies considered in the simulation study are a transit-stub topology and a random

topology obtained by the GT-ITM topology generator [20] andthe ns-2 simulator [19]. As
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TABLE I

SIMULATION ENVIRONMENTS FOR WIRED NETWORKS

ID
network measurement

topology nodes links paths links

0 transit-stub 100 374 50 77

1 transit-stub 1,010 8,068 100 208

2 transit-stub 1,010 8,068 200 356

3 transit-stub 5,025 83,106 200 407

4 transit-stub 5,025 83,106 400 726

5 random 100 1,058 50 65

6 random 1,000 10,008 100 221

7 random 1,000 10,008 200 365

8 random 5,000 50,184 200 539

9 random 5,000 50,184 400 916

listed in Table I, each topology has 100 – 5,000 nodes including both internal nodes (e.g.,

routers and switches) and end hosts. In each topology, several routing tables are constructed

with measurement paths of different sizes. The transit-stub topology and the random topology

have 374 – 83,106 and 1,058 – 50,184 unidirectional links, respectively. A fractionf of the total

links are non-lossy, where the value off varies in the range of 0.5 – 0.9. The loss rates for both

lossy and non-lossy links are assigned according to the following loss rate distribution used in

[3], [13]: (i) LRD1: if a link is classified as a non-lossy link in the simulation,its loss rate is

randomly selected from the range of 0 – 0.01, and if a link is classified as lossy, its lossy rate is

randomly selected from the range of 0.05 – 0.1,(ii) LRD2: the loss rates for non-lossy and lossy

links are selected from the ranges of 0 – 0.01 and 0.01 – 1, respectively. After assigning the

loss rates to links, we obtain the path loss rates by a Gilbertmodel, in which packets traveling

along a path are independently dropped at each link according to its assigned loss rate. For each

configuration, we repeat the simulation runs twenty times and report the average of similarity,

coverage, and false positive rate.
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Fig. 3. Computation of the sparse solution (Topology 1 andLRD1).

A. Computing the Sparse Solution

We demonstrate how the proposed algorithm computes the sparse solution. Recall that in Fig.

2 the number of selected non-lossy links is increased from (n−m) to n with an increment step

of ∆i in every iteration. If a link is classified to be non-lossy, its loss rate is set to zero, and the

corresponding column is removed from the matrix. After the iterations, we choose the solution

that gives the minimum value of‖Ax− y‖ as a sparse solution.

Fig. 3 (a) shows the changes of‖Ax− y‖ under Topology 1 as the iterations proceed. (The

details on the topology are given in Table I). To help understand the process of computing the

sparse solution, the iteration starts ati = 0 instead of 108 (=n−m). In the course of identifying

and pruning non-lossy links, the value of‖Ax−y‖ gradually decreases to a point (i.e.,i∗ ≈ 140)

and increases again. This implies that selecting more non-lossy links does not improve to reduce

the error of‖Ax− y‖ for i > i∗, and we take the solution ati∗ as a sparse solution. Moreover,

i∗ does not change significantly under different incremental values of∆i.

Next, we investigate the computational complexity of the proposed algorithm. Although the

minimum norm least square solution is repeatedly computed in Fig 2 (Step 4), the complexity is

not the number of iterations times higher than that for the minimum norm least square solution.

This is because the dimension of the set of linear equations decreases as the iterations proceed.

To compare the computational overheads incurred by the various algorithms considered in this

simulation study, we have implemented them with Matlab functions, and made the measurement
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using the ’cputime’ function on an IBM Thinkpad T30 (with a single 1.8 GHz Pentium IV

processor and 512 MBytes main memory) that runs Microsoft Windows XP. Fig. 3 (b) shows

the average CPU times incurred in computing the solution using MNLS, LINOPT, and SS (with

rankings calculated by criteria II and III). Note that SS with rankings calculated by criteria I and

II incurs less computational overhead, because it does not compute SVD of the original matrix

A.

We observe that the computation time of SS with∆ = (n −m)/10 is only twice as much

as that of MNLS, even though SS requires SVD be computed ten times. As∆i decreases,

the computation time of SS also linearly increases. As compared with LINOPT, SS with∆ =

(n −m)/10 incurs approximately two orders of magnitude smaller computation overhead than

LINOPT. As reported in [13], although the Markov Chain MonteCarlo (MCMC) with Gibbs

sampling outperforms LINOPT, it is also computationally much more expensive than LINOPT.

Hence, we do not consider MCMC with Gibbs sampling techniquein the simulation study.

B. Comparison w.r.t. Similarity

Fig. 4 gives the cosine distances for two possible fractionsof non-lossy linksf = 0.9 and 0.7

under two loss rate distributionsLRD1 andLRD2 in 10 topologies (Topologies 0-9). Whenf

= 0.9, only 10 % of links are lossy, and the assumption of sparse lossy links holds. On the other

hand, whenf = 0.7, the assumption does not really hold, and we can study whether or not, and

to what extent, the proposed algorithm renders reasonable results.

Several observations are in order. First, SS gives a larger cosine distance than both MNLS

and LINOPT under most cases, and achieves the best performance. Note that the obtained

cosine distance varies from 6.54 (Topology 8 in Fig. 4 (c)) and to 9.32 (Topology 5 in Fig.

4 (b)) and highly depends on the network topology used in simulation. UnderLRD2 (Fig. 4

(c) and (d)) where the link loss rates are distributed in a larger range, the lossy links can be

more clearly separated and SS gives better improvement thanit does underLRD1 (Fig. 4 (a)

and (b)). Second, MNLS and LINOPT give almost the same coverage and false positive rates.

Recall that MNLS minimizes the 2-norm ofx while LINOPT does the 1-norm. Based on this

observation, we conclude that it is not necessary to solve the linear optimization problem, as it

is computationally more expensive and yields approximately the same results.

Fig. 5 (a) gives actual and estimated loss rates under the loss rate distributionsLRD1 in
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Fig. 4. Similarity measure for MNLS, LINOPT, and SS in a variety of topologies.

Topology 1. Recall that lossy links have loss rates in the range of 0.05 – 0.1, and non-lossy

links have loss rates in the range of 0 – 0.01. If the estimation is perfect, the loss rates lie on the

straight line from the origin to (10,10). We observe that most of the estimates are below the line,

which implies the loss rates are under-estimated under bothmethods. However, as compared to

MNLS, SS gives the larger estimate that is close to the ideal line in most cases. The reason is

that the sparse solution selects a small number of links and assigns comparatively larger loss

rates on them, while the minimum norm least square solution has the tendency to spread small

loss rates to a number of links. In general, SS gives more accurate estimates under the different

topologies as shown in Fig. 5 (b) – (d).
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Fig. 5. Real and estimated loss rates under the minimum norm least square solution (MNLS) and the sparse solution (SS) in

the case off = 0.9.

C. Comparison w.r.t. Coverage and False Positive Rate

Fig. 6 and 7 show the performances of loss rate estimation in terms of the coverage and the

false positive rate under the loss rate distributionsLRD1 andLRD2, respectively. Overall, the

performance trends with respect to the coverage and the false positive rate shown in Figs. 6 and

7 match that of the cosine distance in Fig. 4 because the performance metrics highly depend on

network topologies. For instance, the algorithms achieve better performance for comparatively

small networks, e.g., Topologies 0 and 5 in Table I.

Among all the algorithms, SS achieves the highest coverage while keeping the lowest false

positive rate for most cases. This result implies that it is possible to identify more accurately

lossy links by exploiting the sparse distribution of lossy links. On the other hand, because the
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Fig. 6. Performance (in terms of the coverage and the false positive rate) of MNLS, LINOPT, and SS for loss rate distribution:

LRD1 in a variety of topologies.

performance dramatically changes according to the simulation setting, we carry out an empirical

study in Section VI to further investigate the performance based on real-life traces.

VI. EXPERIMENTS BASED ON THERoofnetDATA TRACES

To evaluate the proposed algorithm in real environments, weleverage the empirical traces

available in the MIT Roofnet project [1]. As discussed in Section IV-A, we construct the logical

links (and the corresponding topology) for each transmission rate with the use of received signal

strengths. The data traces provide us with the link loss rates, and we compute the loss rate

of a path using Eq. (2). With the “derived” topology and the path loss rates, we compute the

estimated link loss rate using MNLS, LINOPT, and SS, and compare them with the actual link
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Fig. 7. Performance (in terms of the coverage and the false positive rate) of MNLS, LINOPT, and SS for loss rate distribution:

LRD2 in a variety of topologies.

loss rates. Note that with the path loss rates measured between end-nodes on the Internet it is

not possible to directly validate/invalidate algorithms,because the link loss rates at intermediate

nodes are not available.

Table II gives the cosine distances under MNLS, LINOPT, and SS, at the transmission rate

of 1, 2, 5.5, and 11 Mb/s. Although the link loss rates in wireless network are believed to be

much higher than those in wired networks (i.e., lossy links are not sparse), SS still achieves

the best performance with respect to the similarity under all the cases. As a matter of fact, the

performance discrepancy is much more salient between SS andMNLS/LINOPT.

Fig. 8 (a) – (d) show the coverage and the false positive rate when we take 2 or 6 links as the
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TABLE II

SIMILARITY MEASURE IN THE WIRELESS MESH NETWORK.

bandwidth (Mb/s) MNLS LINOPT SS

1 0.747 0.875 0.959

2 0.718 0.845 0.951

5.5 0.645 0.785 0.909

11 0.741 0.742 0.814
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Fig. 8. Performance (in terms of the coverage and the false positive rate) in the wireless mesh network.
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TABLE III

MEAN AND MEDIAN OF ABSOLUTE ESTIMATION ERRORS IN THE WIRELESSMESH NETWORK.

bandwidth (Mb/s)
mean of absolute errors (%) median of absolute errors (%)

MNLS LINOPT SS MNLS LINOPT SS

1 9.6 7.38 4.58 5.26 4.10 2.50

2 11.03 8.66 5.10 9.10 6.24 1.97

5.5 11.57 9.44 5.21 8.29 8.05 4.53

11 13.22 13.06 11.30 6.79 6.39 5.06

most lossy links depending on the estimated loss rates. SS gives the largest coverage and the

smallest false positive rate in all the cases. In particular, as shown in Fig. 8 (a) and (b), if 2 links

with the largest link loss estimates under SS are selected atthe transmission rates of 1, 2, and 11

Mb/s, they are actually the most lossy links in the wireless network with a probability of 1. In

Fig. 8 (c) and (d), the coverage and the false positive rate gets smaller and larger, respectively,

as the transmit rate increases. This is due to the fact that the links incur higher loss rates at a

high transmission rate and the distribution of the link lossrates is less sparse (Fig. 1 (b)).

In the course of carrying out the experiment, we also find thateven though the topology is

constructed using the traces of received signal strengths,a few links still incur packet loss rates

close to 1. In this case, SS successfully identifies the linkswith high lossy rates and assign them

high loss estimates while MNLS and LINOPT give inaccurate estimates.

Table III shows the statistics of absolute estimation errors. In all the cases, SS gives the

smallest mean and median errors. Although the link loss rates in wireless network are believed

to be much higher than those in wired networks (i.e., lossy links arenot sparse), SS still achieves

the best estimation performance under most cases.

VII. CONCLUSION

In this paper, we have considered the problem of estimating,based on end-to-end path loss

rates, loss rates of internal links. It has been shown that the maximum likelihood estimate (MLE)

for link loss rates leads to an under-determined system of linear equations. Although most existing

work uses the minimum norm solution as the solution to this under-determined linear system,

we show that there is room for further improvement. We exploit the statistical knowledge that
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lossy links are sparse in real operating networks and formulate a new optimization problem that

minimizes the number of lossy links, subject to satisfying the set of linear equations. We then

propose an iterative algorithm to solve the optimization problem by identifying non-lossy links

and pruning columns that correspond to non-lossy links fromthe matrix that characterizes the set

of linear equations. The process of identifying non-lossy links is performed using three different

criteria (and a combination thereof) determined by three different methods: basis selection, sorting

of path loss rates, and solving the minimum norm least squareproblem. We show via simulation

and empirical studies on the Roofnet traces that (i) the computational complexity of the iterative

algorithm is comparable to that of MNLS (and two orders of magnitude smaller than LINOPT);

and (ii) the sparse solution obtained under the iterative algorithm achieves high coverage and

incurs a small number of false positives under various network scenarios.

As part of our future work, we will further investigate the issues of i) how to improve the

iteration procedure by using the rank information of the reduced matrix, and ii) how to predict

the identification performance in advance for a given routing matrix A. We will also carry out

empirical experiments on traces obtained on large-scale networks to further validate and evaluate

the proposed iterative algorithm.
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