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Abstract

In this paper, we consider the problem of estimating linlsloates based on end-to-end path loss
rates in order to identify lossy links on the network. We fidgrrive a maximum likelihood estimate
for the problem and show that the problem boils down to therimatversion problem for an under-
determined system of linear equations. Without any priamviedge of the statistics of packet loss rates,
most of the existing work uses the minimum norm solution far tinder-determined linear system. We
devise, under the assumption that link failures are abnoenents in real networks and lossy links are
sparse among all the internal links, an iterative algoritonidentify non-lossy links and to remove the
corresponding terms from the under-determined linearegysfo identify non-lossy links, we propose
to use three different criteria (and a combination thereb® criterion determined by a basis selection
technique, that obtained by sorting path loss rates, anddi@rmined by the minimum norm least
square solution. We show via simulation and empirical gsidin the MITRoofnettraces that the
computational complexity of the iterative algorithm is quamnable to that of the minimum norm least
square approach, and that the solution obtained underetagiite algorithm achieves high coverage of

lossy links, while incurring only a small number of false fiees in various network scenarios.
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. INTRODUCTION

Fundamental network characteristics such as the netwdal dad the packet loss rate provide
important information on the operational conditions of awwek. They are also highly correlated
to events perceived by network operators and end users.ikugjumetwork characteristics for
internal links is, however, quite difficult, due to the fabtiat most core routers and switches
do not support direct access to the links. They are usualgrried by observing and analyzing
end-to-end measurements, the techniques of which arelyiseahed asnetwork tomography
For example, the network delay experienced at each routebeanferred by using the routing
information (available in the routing table) and the enéttml measurements of paths delays.
Indeed most network tomography techniques are groundedathematical inference that esti-
mates the source signal of interest (i.e., network chamatits of internal links) with a set of
sampled observations (i.e. end-to-end measurement data).

Network tomography has received significant attention.okdimg to the way in which mea-
surements are made, existing work can be roughly classifted¢hose that send multicast packets
to probe the network [2], [14], those that send unicast pacle probe the network [3], [6],
[8], [10], [13], [16], and those that employ passive applescto monitor data traffic (without
sending probing packets) [12], [13], [16]. Various mathéos techniques such as maximum
likelihood estimation (MLE) [2], [7], expectation-maxigation (EM) [6], [16], and Bayesian
inference [12], [13], [15] have been exploited as the infeeebase for network tomography.

One of the major challenges in all the aforementioned ndtwwnography problems is that the
mapping from the observed measurements to the corresgphuialevel characteristics cannot
in general be uniquely determined [5]. One has to utikzlitional statistical information on
the link-level characteristics. For example, in the case timicast is used to probe the network,
the number of measurement paths is generally smaller tlarothnternal links. As a result, the
statistics obtained by measuring end-to-end path chaistats is not sufficient to uniquely
determine the link-level network characteristics. To abtadditional statistical information,
several measurement methods, such as those in [6], [10], s&ck-to-back packet pairs and
exploit the conditional probability of packet transmissi@hanget al. [23], on the other hand,
exploit statistical independence to estimate the traffitrimbetween origin and destination pairs.

In this paper, we consider the problem of inferring packessloates of internal links and
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identifying lossy links given a set of end-to-end measumsef path loss rates (and the
routing information). We first derive a simple maximum likelod estimate (MLE) to this
problem, and show that the problem essentially boils dowrsdlving an under-determined
system of linear equations (that characterizes the ralstip between link loss rates and path
loss rates). We would like to stress that, although simiktsmork tomography problems have
been considered in the form of an under-determined systamist the first effort to show that
MLE is implied in the under-determined linear system. While most existwogk [3], [13] uses
the minimum norm solution as the solution to this underaeieed linear system, we show that
there is room for further improvement. We exploit the stat#éd observation that lossy links are
sparse in real operational networks and formulate a newnigstion problem that minimizes the
number of lossy links, subject to satisfying the under-aeieed linear system. This statistical
observation has been corroborated by empirical studie3]if41], in which the authors showed
the distribution of the packet loss rate is centered neay eeen though it has a wide range.
The sparsity property of lossy links has also bémplicitly used in [8], [13] in its design of
the inference algorithm (in a different context).

Finding an optimal solution to the optimization problemtth@nimizes the number of lossy
links, subject to the under-determined linear system is &ld nd requires combinational search
[4]. We propose an iterative algorithm to solve the optimiaaproblem by identifying non-lossy
links and pruning columns that correspond to non-lossyslifnem the matrix that characterizes
the under-determined linear system. The process of igamgifnon-lossy links is performed
using three different criteria (and a combination there@jermined by three different methods:
basis selection, sorting of path loss rates, and solvingrtimemum norm least square problem.
We show via simulation and empirical studies on the NRdofnettraces that the sparse solution
obtained under the iterative algorithm achieves hagiverageand incurs a small number of
false positivesinder various network scenarios. Here the coverage is defisehe ratio of the
number of links correctly identified to be lossy to that oflressy links, and a false positive
occurs when a non-lossy link is incorrectly identified to besly.

The rest of the paper is organized as follows. In Section #,imfer link loss rates based
on maximum likelihood estimation (MLE) and show that thelpeon essentially boils down to
solving an under-determined linear system. In SectionwH, give a summary of related work

in the literature, and motivate the need for our work. In BectV, we validate the assumption
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that lossy links are sparse in real operational networkd, @opose an iterative algorithm to
solve the new optimization problem that minimizes the nundfelossy links, satisfying the
under-determined linear system. Following that, we preseSection V and VI our simulation
and experiment studies that evaluate the proposed iteratgorithm in terms of computational
overhead, coverage (i.e., the number of correctly infetosgdy links), and false positives (i.e.,

the number of incorrectly inferred lossy links). Finallyewonclude the paper in Section VII.

[I. PRELIMINARIES

The network tomography problem considered in the paper isfey the link loss rates in
a network by observing the end-to-end path loss rates bateed hosts. The packet loss rate
is defined as the ratio of the number of successfully trartethjpackets to the total number of
packets during a measurement interval. Note that packetr#&ies dynamically change over time
and cannot be simultaneously measured at all the links, andehfor problem tractability, we
focus on the first-order statistics of packet loss rates. d$smption of stationary behavioral
characteristics over a measurement interval has beenbovated by rigorous, empirical studies
given in [3], [13].

A. Problem Formulation Based on Maximum Likelihood Estiorat

Consider a networkN' that consists of a sel. of unidirectional links indexed by =
1, |L] 2 n and a setS of source-destination directed paths indexedsby 1,-- -, |5]| 2 m.
Here| - | denotes the cardinality of a set.

Each paths is composed of a sét(s) C L of links. The setd.(s), s € S define anm-by-n

routing matrix A whose elements are

1, if l e L(s),
0, otherwise

agp =

This routing matrixA can be obtained by several techniques based on 'tracermdas assumed
to be given in this paper.

Under this network model, we infer link loss rates based omimam likelihood estimation
(MLE) and show that the problem essentially boils down twisg an under-determined linear

system. Let, and f, denote the numbers of received and lost packets along & pagspectively.
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Then, the observation data set is definedJas: | J, ¢ (s, fs). Let the set of link loss rates to
be estimated be denoted &s= {p,,--- ,p,}, wherep, is the loss rate at link.
Under the assumption of a Bernoulli loss process, the hkeld function for a single obser-

vation can be written as

Pr(O|P) = [ (1 = po)p, (1)
seS
wherep, is the loss rate of path and can be expressed as
ps=1-— H(l—pl). (2)
leL(s)

By taking logarithms on both sides of Eq. (1), we have

In PI‘(O|P) - Z [ts ln(l - ps) + fs 1n<ps>]

seS
= > |t > m+flmf1- J] e ||,
ses leL(s) leL(s)

wherez; = In(1 — p;). In the matrix form, the log-likelihood function can be egpsed as

InPr(O|P) = t"Ax + " In (1,, — ), (3)
where the column vectors of, t, andf are defined ax = [z, -, :cn]T, b= [ty, - ,tm]T,
andf = [fy,--- ,fm]T, respectively, and,, € R™ is the 1's column vector .

By replacing the variablg = Ax in Eq. (3) and differentiating it with respect §g we have

0InPr(O|P) o eYs
Ays B "1 — ey

Setting the above equation to zero, we obtain the valug, tfiat maximizedn Pr(O|P):

t,
ys = In (t + f

Thus the maximum likelihood estimate gfis the solution of the following linear equation:

)=1In(1—p,) for se 8.

y = Ax. 4)

Alternatively, the system of linear equations in Eq. (4) tenobtained by taking logarithms
on Eg. (2):

In(1—p,) = Zlﬂl—pl Zasllﬂl—pz

leL(s) leL
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and

Ys = E ag1xy,

leL

which leads toy = Ax.

In summary, the problem of inferring link loss ratelyy, | [ € L}, based on maximum
likelihood estimation with the likelihood function Eq. (1§ventually boils down to solving the
system of linear equations in Eq. (4). If the system of lineguwations is under-determined, MLE

has an infinite number of solutions.

B. Solving Under-Determined Linear Equations

The tomography problem can be stated as follows: Given angumatrix A and the packet
loss rate,y € R™, measured by end hosts on an end-to-end basis, infer thetplass rate of
each linkx € R™ such thaty = Ax. As a special case, iA is a square matrix with full rank,
then there exists an inverse matrix Af and we have a unique solution ef= A~ly.

In general, the numben, of links is larger than the number,, of paths measured end-to-end,
and the number of unknown variables is larger than that eflirconstraints. That ig, = Ax is
under-determined, and may have an infinite number of selstiBor example, in a server-client
measurement scheme, a tree rooted at the server is comdtrwih all the clients as leaves.
The number of links is usually larger than that of paths in tiiee. In an overlay network of
k nodes, although the number of patis, is larger than the number of links, as reported in
[3], the rank of A is not proportional tok but is much smaller than the number of links. As
a result, the linear system is usually reduced to a smalldemrdetermined linear system (with
full ranks) by selecting measurements iodependenpaths.

To solve such an under-determined linear system, it is sacgdo impose additional condi-
tions for selecting a solution. One possible criterion {(thas been widely used) is to select the
solution that renders a minimdl, norm. For example, i, norm is used as the criterion, the

problem can be written as
minimize x” x (5)
subject toAx =y,

and the optimizer* is called theminimum norm solutiomf the undetermined system.
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If A is full rank (i.e.,m = rank(A) andm < n), there exists an inverse matrix &A7”,
and the optimizer can be shown to be = AT(AAT)"ly. Here, AT(AAT)"! is the (right)
pseudo-inverse matrix oA. On the other hand, ifA is rank deficient (i.e.yn > rank(A)),

A AT is singular, and theninimum norm least square solutican be obtained by singular value

decomposition (SVD) [11]. Let the singular value decomposiof A be expressed as

S0 .,
A=U- VT, (6)
0 0

whereU andV are column and row orthogonal matrices:
U = [u17”' 7um]7
V = [Vlv"'vvn]v

¥ is a diagonal matrix:
Y =diagoy, - ,ow),

the subscriptv is the rank of the matriA, ando;’s are singular values oA in the decreasing

order (i.e.,o; > --- > oy > 0). Then the matrixA™ is defined as

10
AT = AT(AAT)T = V. .U’
0 0
w 1 .
0,

i=1 "
With the use ofA™, the solution to Eq. (5) is simply expressed s = A*y in the rank
deficient case.
In summary, as the problem in Eq. (4) has infinitely many sohg, the minimum norm solu-
tion has been widely used. However, we will show in subsefjsections that with exploitation
of the sparsity characteristics of lossy links, it is poksito devise better solutions than the

minimum norm solution.

[1l. RELATED WORK

Network tomography has recently received significant éittenand can be broadly classified
into two categories according to the network charactessto be inferred and estimated [5]:

() link-level parameters, such as the link delay and the lirds loate, based on end-to-end,
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path-level measurement [2], [3], [6], [8], [10], [13], [14]L6], and(ii) path-level traffic intensity
based on link-level measurements [15], [17], [22], [23]s&arch efforts in the former category
can be further classified, based on the mechanisms with whiehisurements are made, into
multicast probing-based [2], [14], unicast probing-bafd[6], [8], [10], [13], [16], and passive
monitoring [12], [13], [16]. They can also be further cld®sd based on the structure of paths
that connect the probe packet senders and receivers, suckeasand/or meshes.

The network tomography problem considered in this papeoigdtimate the packet loss
rates of internal links based on end-to-end, path-levelsoresnents and does not make any
explicit assumptions on the measurement method or the ctionestructure. In what follows,
we summarize several works that are most closely relatedit®. o

Coates and Nowak [6] proposed a back-to-back packet paisunement scheme to collect
more informative statistics for link loss inference in agdensource, multiple-receiver network.
The method exploits the conditional success probabilityhef second packet as the additional
constraints in the loss inference problem. Harfoush [18p alsed the packet pair probing
technique for determining whether a pair of connectionmftbe same source experience shared
losses.

Padmanabhaet al. [13] presented a server-based inference framework tha doginject
active probing packets into the network, but instead explexisting traffic traces observed at a
HTTP server to infer link characteristics. To infer the lildss rates on the paths between the
server and its clients, they proposed three methods: rarggonpling, linear optimization, and
Bayesian inference using Gibbs sampling. The latter twohoos are reported to give better
performance but are computationally more expensive. Tieati optimization method minimizes
the cost function of||x||; subject toAx = y. An optimization problem of this type is called
the minimum fuelproblem, and the minimum norm solution obtained under thrsntilation
usually gives a solution with a smaller number of non-zeries than that obtained in Eq. (5)
(based on thd., norm) [4]. With the use of the likelihood function of (1), tBayesian inference
method uses Markov Chain Monte Carlo (MCMC) with Gibbs sangplo solve the problem and
outperforms the others. However, due to its computationptenity, it is practically impossible to
apply the Bayesian inference method with Gibbs samplingléoge-scale tomography problem.

Chenet al. [3] focused on how to reduce the measurement overhead in &aring system

for overlay networks. An algebraic approach has been pexpos select and monitor only
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linearly independent paths in an overlay network wittend hosts, while fully describing all
the n? paths & ~ nlog(n) for a reasonably large). The loss rates on the paths not selected
can be inferred by the estimates for the links on the seleateddindependent paths. While the
overlay network is characterized by an over-determineghlirsystem, the linear system obtained
by pruning linearly dependent paths becomes under-datednith full rank. The authors then
used the QR decomposition to compute the minimum norm swiuti

By exploiting the sparsity characteristics of lossy linksffield [8] proposed a simple rule-
based algorithm to infer the link that performs worst. Thegmsedsmallest consistent failure
set(SCFS) rule designates as lossy only those links that anestethe root and consistent with
the observed pattern of lossy paths. SCFS incurs much lesputational complexity, and yet
renders performance comparable to that of the linear opéitimn method given in [13].

Zhanget al. [23] considered the network tomography problem that esgémand infers the
traffic matrix (i.e., the volume of traffic between severaigor and destination pairs) from
link measurements. They introduced the notionregularization of ill-posed problem§.e.,
solving under-determined linear equations such as thahetkfin Eq. (4)), and proposed to
exploit statistical independence of network traffic betwegigin and destination pairs and to
minimize mutual information between them. They propose@stimation method, callesiMI,
and showed that as compared to the minimum norm solution, kédtlers more accurate and
robust estimates.

In summary, while the minimum norm solution has been usuadlgd (such as in [3], [13])
as a solution in the absence of other additional informatibhas been shown in [8], [23] in
a different problem setting that with additional inforntatias side constraints, the resulting
solution could be made more accurate and robust. In the remtios, we will leverage the
fact that lossy links are usually sparse in real networksd, @evise a solution algorithm to the

under-determined linear system.

V. ESTIMATION OF LINK LOSSRATES USING THE SPARSITY CHARACTERISTICS OFLOSSY

LINKS

In this section, we first investigate whether or not the aggion that lossy links are sparse
is reasonable. Then we exploit the sparsity charactesistidossy links (i.e., there exist only a

small number ofr;,'s whose values differ significantly from zero in real netk&rto reduce the
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Fig. 1. Cumulative percentages of packet loss rates inrlateand wireless mesh network.

number of unknown variables ik, and devise (under the sparsity assumption) an algoritlam th
computesx in EqQ. (4). By identifying links whose loss rates are liketylte zero and forcing
the corresponding estimates to be zero, we obtain a newnsyaftéinear equations with matrix

A,, where A, is reduced from then-by-n matrix A.

A. Validation of the Sparsity Characteristics of Lossy kink

The first issue we address is whether or not lossy links areeieidsparse. Many empirical
studies have showed that packet loss rates of end-to-ehd pa¢ usually close to zero even
though their distribution has a wide range. For examplengtet al. [21] obtained packet loss
traces between 31 hosts by using the NIMI measurement inicdasre in 2000. An analysis on
these traces showed that 11-15 % of the traces incurred 8p4@s52% incurred loss rates of
0.1%, 21-24% incurred loss rates of 0.1-1.0%, 12-15% imcltoss rates of 1.0-10%, and only
0.5-1% incurred loss rates exceeding 10%. Chieal. [3] measured packet loss rates between
51 hosts in the PlanetLab testbed in 2003 and reported th@#®56f paths had loss rates of
0-5%.

We obtain the data sets of loss rates (measured on July 29) #6éh the Active Measurement
Project (AMP) at National Laboratory for Applied Network $&arch (NLANR). Fig. 1 (a)
depicts loss rates measured at three monitors located atdfi@alifornia at Berkeley, University
of lllinois at Urbana Champaign, and Univ. of Massachuséttgshe other 128 AMP monitors.

In line with the reports given in [3], [21], we observe that¥8®f the 384 paths incur small

June 10, 2007 DRAFT



11

loss rates (less than 1%).

As the loss rates of links on a path are not larger than thahefpath (i.e., fork € L(s),
pr—Ps = —(1 = i) (1 = [Ljep (5426 (1 — ) <0 ), @ non-lossy path contains no lossy link. As
a result, based on the reports given in [3], [21] and our owalyesis (of data traces available at
NLANR), we conclude that a majority of links have nearly zéogs rates and lossy links are
guite sparse in real wired networks.

We also obtain data traces measured on a 38-node urban BQ2ddh networlRkoofnet[1].
With the packet loss traces measured at different trangmisates of 1, 2, 5.5, and 11 Mb/s,
we construct network topologies spanning the whole wiselesdes with the use of the traces
of received signal strengths. Fig. 1 (b) depicts the losssratcurred on the links of the network
topologies, which are constructed at different transraissates. We observe that, although the
link loss rates are much larger than those incurred in wirglsvorks (Fig. 1 (a)), still 50 % of
the logical links incur loss rates of less than 1 %, and 80 %eifrt incur loss rates of less than
10 %. That is, even in a typical wireless mesh network, thke loses are sparsenough.We

will exploit this characteristics in estimating link losates.

B. Overview of Our Solution Approach

Based on the sparsity characteristic of lossy links, we @septo computex by solving the

following optimization problem:
minimize 17 sign(—x) 8)
subject toAx =y, ;<0 for [ € L.

The cost function in Eq. (8) gives the number of nonzero estofx. While the minimum norm
solution of Eq. (5) has the tendency to spread the loss rates@a number of links, the sparse
solution obtained in Eq. (8) will only assign non-zero tetms small number of links, subject
to the constraint.

Consider the scenario in which there exists one lossy liokgla path. The minimum norm
solution would assign non-zero and (relatively) small lages toseveralnon-lossy links on the
lossy path. This leads to an increase in the number of inctyranferred lossy links (termed as
false positives On the other hand, if there exist two or more lossy links grath, the solution

given in Eg. (9) may assign a high loss rate to only one of thEms leads to a decrease in the
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number of correctly inferred lossy links (termed esveragg. With the sparsity characteristic
of lossy links, we expect that such cases occur rarely.

The optimization problem given in Eqg. (8) is closely relatedhe best basis selection problem,
in which a proper subset of vectors is chosen from the overptete representation of a signal
[4]. In other words, the best basis selection problem is lectea few columnsa;’s of the
matrix A that best represent the measurement vegtiorEq. (4). Finding a smallest basis set of
vectors is NP hard, and requires combinatorial search @this end, we propose a suboptimal
method to compute a sparse solution for the optimizatioblpro in Eq. (8).The key operation
is to identify non-lossy links and to reduce in a step-bypstenner the dimension of the system
of linear equations, by eliminating identified non-lossykg until|| Ax — y|| reaches its minimum
value. The process stops when reducing the dimension of the sehedrliequations does not
further minimize||Ax — y||.

Fig. 2 gives the proposed algorithm. It starts after pruning- m) non-lossy links because
the rank of A is less than or equal t&:.. Then in each iteration/\i more non-lossy links are
inferred. The procedure of assigning weights and idemtifymon-lossy links in steps 1-2 is
carried out by using the three criteria to be given in Sectié&. Once a link is identified as
a non-lossy link, its loss rate is set to zero, regardlesssofomputed loss rate. The loss rates
of the reduced set of linear equations are then computedebyrincated SVD technique given
in Section IV-D.

There are several possible refinements that can be madetherfumprove the efficiency of
the algorithm given in Fig. 2(i) once a link is identified to be non-lossy, it is excluded in
subsequent iterations; arfil) the rankings of links are not recomputed in every iteratiomly

those of remaining links are required to be updated.

C. Classifying Links into Lossy and Non-lossy

We consider three methods in selecting non-lossy links, (itee links whose loss rates are
likely to be zero). Based on the outcomes of these methodshare assign rankings to links,
with lower rankings assigned to non-lossy links. The ragkiare integer values in the range of
1 andn. Given the rankings of a link computed in the three methads,w,, andws, we then
assignw = max (wq, we, w3) as the final ranking for the link. The values ofs are used to

determine whether or not the corresponding links are nesyldf a link is identified as a lossy
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/I The number of inferred non-lossy links is increasedXyin each iteration
i < (n—m) Il i is the number of non-lossy links
min_result « oo
WHILE i<n
1. Compute the rankings of links according to the criteridéodiscussed in Section IV-C.
2. ldentify non-lossy links whose rankings are in the ranfélo - - ,i] and assign
zero loss rates to them.
3. Obtain the reduceeh-by-(n — 7) matrix A, by taking columns corresponding to
the remaining links.
4. Compute the solution for the reduced linear system ugiegruncated SVD technique
given in Section IV-D.
5. Assign the solution obtained in step 4 to the remaininigslin
6. Compute]|Ax —y||. If ||Ax —y|| < minresult result — x.
7.1 «— 1+ Ad.
END
result contains the link loss rates that gives

the minimum||Ax —y]||.

Fig. 2. lIterative algorithm that computes the sparse smiutdr the optimization problem in Eq. (8).

link based on a criterion, it is identified as a lossy link mefi@ss of the decisions based on the
other criteria because the final ranking is determined byntagimum value of the rankings.

Criterion | — Selecting Bases We use the solution to the best basis selection problem
[18], [24], [25], which aims to find a sparse solution withddkann nonzero entries. Note that
y can be expressed by using the column vectord of

y = leal =x1a; + - -+ Tpa,,
=1

where a; is the (" column vector ofA. By solving the best basis selection problem, we can

select the non-zero column vectors Afto best represent the measured vegton Eq. (4). The
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selected column vectors correspond to lossy links with neno- loss rate,

Among a number of algorithms for best basis selection, wethsesimplest method based
on the projection technique [18], [24], [25]. Suppose thallydhe k" link amongn links has a
non-zero loss rate, i.er;, # 0 andx; = 0 for [ # k. Then,y is collinear with thek® column of
A, and we haver, = a] y/ala,. Even thoughe,’s are not exactly zero fof + k, x;, will have
a larger value than the others with a high probability. Tfeges in the case that only one lossy
link exists, we can identify a lossy link as the one that mazés the normalized projection on

each column ofA, i.e., thek'™ link is identified as a lossy link, if
|aly|
ala;

fori=1,--- n. (9)

k = arg max
(2

Whenp lossy links are to be identified (Fig. 2), we retaiinks whose corresponding column
vectors of A render the firsp largest normalized projections @f and declare the other links
as non-lossy. The reduced mati. is thus composed of the columns of A associated with
the selecteg links.

Criterion Il — Sorting Path Loss Rates: If a path contains a lossy link, then its path loss
rate is likely to be larger than that of paths without any yoliask. On the other hand, if there is
no lossy link on a path, the loss rate of the path would be daersuch a case, we can identify
the non-lossys links on the path and prune them in the nesdtibe. Thus, we determine the
ranking of a link based on the loss rate of the path(s) thatitikebelongs to.

First, the rankings of paths are computed according ot thte lpas rates. We assign a (low)
ranking of "1” to the links on a path with the minimum path lasdge. Then, the ranking of a
link is determined by that of tha path that the link belongsAse a link may belong to multiple
paths, the ranking of a link is computed by taking the mininnatue of rankings obtained at
multiple paths. Note that at least one path including a $igdank has almost zero loss rate of
path, it means the link is not a lossy link. Specifically, le¢ set of linear equations of Eq. (4)
be sorted in an ascending order with respecyidi.e., vy, < y,.1 < 0 for 1 < s < m). We
computea(l) 2 in S(l) for I € L, where S(l) is the set of the indices of the paths which
link [ traverses. For example, if a linkbelongs to the ordered, multiple paths of 1, 3, and 5,
S(l) ={1,3,5} anda(l) = 1. The rankings of linksu,’s can then be determined according to
a(l)'s. Note that once the values of) are computed, they need not be computed in subsequent

iterations. Instead, only the rankings (for the lossy littkat remain in each iteration) have to
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be updated.

In spite of its low computational overhead, this ranking heetdism does not reflect whether
or not a link is lossy under several cases. Even though a kigtseon a path with the minimum
path loss rate, it may be lossy. Consider, for example, alikeenetwork topology with a lossy
link connected to its root node (i.e., measurement serdex)every path includes the link, the
link has the ranking of "1” and could be identified to be noedy For this reason, the rankings
wq WIll be used in conjunction with those obtained in the othextmods. As we use theax
function to calculate the final composite rankings, the abfalse positive case can be readily
avoided.

Criterion Ill — Using the Minimum Norm Least Square Solution : Recall that in each
iteration in Fig. 2, we compute the solution for the redudeddr system (Step 4). We may use
the solution obtained in Step 4 to determine the link rankingto be used in the next iteration.
The links with small loss rates are assigned low rankings.

Summary: Use of different combinations of the criteria helps to idigrnihe combinations
that are robust and less susceptible to measurement endrawanerical computation errors.
Through our extensive studies, we find that the combinatioCraeria Il and Il gives the
best results, and will henceforth use it in the simulatiardgt However, as the computation of
SVD is quite expensiveN?), we use the combination of Criteria | and Il to obtain theueetl
m-by-m matrix A, in the first iteration of Fig. 2 without computing SVD of theiginal and

large matrixm-by-n matrix A.

D. Computing Link Loss Rates

As the reduced matriXA, is usually rank deficient, we estimate the loss rates of loskg by
computing the minimum norm least square solution via the S&@hnique. In this subsection,
we elaborate on the SVD technique used to compute the pseueise of A in Section 11-B.
One issue that has to be carefully addressed is that the ree@asot of path loss rates is highly
susceptible to noises resulting from various factors (sa€hthe burstiness in packet losses),
and the noises thus introduced in the measurement may skrimopair the accuracy of the
calculation results. This is due to the fact that the term8dn(7) contains reciprocals of small,

near-zero singular values.
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To reduce such undesirable effects, we usetthiecated pseudo-inversaethod described in
[9], in which small singular values are simply discarded hyntating the terms at an earlier

indexy < w. That is, instead of usin& in Eq. (7), we use
3, =diag(oy,- -, 0,),

and the truncated pseudo-inversefofcan be written as
1
A=) ;viuZT . (10)
=1
While truncating higher terms in Eq. (7) reduces the adveffect of measurement noises, it
may also result in loss of accuracy. To determine an adedguateating indexy, we use the

following criterion: the percentage accounted for by thstfir singular values is defined as

k
Tk = 72%71 al.

Zi:l Oi

One may pre-determine a cut-off valug;, of cumulative percentage of singular values, and

calculatey to be the smallest integer such that> 7*. We usually set to 0.98.

V. SIMULATION RESULTS

To evaluate the performance of the proposed algorithm imasing packet loss rates, we have
conducted both a simulation study and an empirical studgdas the MITRoofnettraces. We
report the simulation results in this section, and will ddfee discussion on the empirical study
in Section VI. We compare the following methods with respectheir capability of inferring
packet loss rates:

(i) Minimum norm least square solution (MNLS): as the routingn®aA is in general a flat
matrix (i.e., m < n) with rank deficiency, we compute the minimum norm least sgua
solution with the use of SVD in Eq. (7).

(i) Linear optimization (LINOPT): The linear optimization rheid proposed in [13] is used.
(Recall that it minimizes the cost functiofix||; subject toAx = y.) We obtain its
solution by using the 'fminsearch’ function in Matlab. Theximum number of iterations
is restricted to half of the default valjedue to the prohibitively long time incurred in

computation. We set the starting value as the minimum noast Isquare solution obtained

The default value in Matlab i20 x n).
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in (i). If the starting value is randomly selected, it usyditads to inaccurate estimates
given the specified number of iterations.

(iif) Sparse solutions obtained by the proposed algorithm (S8)cMnhpute two sparse solutions
using the algorithm in Fig. 2, based on the combination of @neeria 1l and Ill used
to assign link rankings (Section IV-C). In Fig. 2, the numlmdriterations is equal to
(n — m)/Ai, and its default value is set to twenty. We can control thenglaity of
solutions by changing\:.

We evaluate the above algorithms with respect to dbeerage the false positive rateand
the similarity under different network topologies. The coverage is defiagdhe ratio of the
number of links correctly identified to be lossy to that oflrfessy links, and the false positive
rate is defined as the ratio of the number of links incorreadbntified to be lossy to that of
the links identified to be lossy. To compute the coverage aedfdlse positive rate, we select
¢ links with the largest estimated loss rates. Heras set to be the number of actual lossy
links in the simulation setting. As we are interested in tdgimg the most lossy links, it is
appropriate to select the links with high loss rates and count the numbers of correatiy
falsely identified links for comparing performances betwe@der MNLS, LINOPT, and SS. If
an inference algorithm tends to give high loss rates to a murablinks, it results in both high
coverage and a high false positive rate. On the other exiréngéves in low coverage and a
low false positive rate. A good inference algorithm shouttliave both high coverage and low
false positive rates.

On the other hand, the similarity measure between the atisalratex and its estimatek
obtained by a given algorithm is defined by tbasine distanceas follows:

X -X

Vixx)&-%)

The cosine distance is considered as the angle between ntary& andx. If the vectors are

cos(x,%X) =

identical, the cosine distance becomes 1. One may use otbasures such as the Euclidean
distance to evaluate the similarity performances. Howea®ithe actual/estimated rates contain
a number of 0's and only a few non-zero values, a simple sumstifnation errors cannot
effectively reflect the estimation performance.

The topologies considered in the simulation study are asiiratub topology and a random

topology obtained by the GT-ITM topology generator [20] athé ns-2 simulator [19]. As
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TABLE |

SIMULATION ENVIRONMENTS FOR WIRED NETWORKS

network measurement
° topology ‘ nodes ‘ links || paths| links
0 transit-stub| 100 374 50 77
1 transit-stub| 1,010 | 8,068 100 208
2 transit-stub| 1,010 | 8,068 | 200 | 356
3 transit-stub| 5,025 | 83,106 | 200 | 407
4 transit-stub| 5,025 | 83,106 | 400 | 726
5 random 100 1,058 50 65
6 random 1,000 | 10,008 | 100 | 221
7 random | 1,000 | 10,008 || 200 | 365
8 random | 5,000 | 50,184 || 200 | 539
9 random 5,000 | 50,184 || 400 | 916

listed in Table I, each topology has 100 — 5,000 nodes inotydioth internal nodes (e.g.,
routers and switches) and end hosts. In each topology, alexarting tables are constructed
with measurement paths of different sizes. The transh-stpology and the random topology
have 374 — 83,106 and 1,058 — 50,184 unidirectional linkspeetively. A fractionf of the total
links are non-lossy, where the value piaries in the range of 0.5 — 0.9. The loss rates for both
lossy and non-lossy links are assigned according to thewiollg loss rate distribution used in
[3], [13]: () LRD;: if a link is classified as a non-lossy link in the simulatiats, loss rate is
randomly selected from the range of 0 — 0.01, and if a link &ssified as lossy, its lossy rate is
randomly selected from the range of 0.05 — @ii}, LR D,: the loss rates for non-lossy and lossy
links are selected from the ranges of 0 — 0.01 and 0.01 — lecésply. After assigning the
loss rates to links, we obtain the path loss rates by a Gilibedel, in which packets traveling
along a path are independently dropped at each link acaptdiits assigned loss rate. For each
configuration, we repeat the simulation runs twenty times @@port the average of similarity,

coverage, and false positive rate.
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Fig. 3. Computation of the sparse solution (Topology 1 &RiD:).

A. Computing the Sparse Solution

We demonstrate how the proposed algorithm computes theespatution. Recall that in Fig.

2 the number of selected non-lossy links is increased from ) to n with an increment step
of A in every iteration. If a link is classified to be non-lossy, libss rate is set to zero, and the
corresponding column is removed from the matrix. After ttegations, we choose the solution
that gives the minimum value dfAx — y|| as a sparse solution.

Fig. 3 (a) shows the changes [pAx — y|| under Topology 1 as the iterations proceed. (The
details on the topology are given in Table I). To help underdtthe process of computing the
sparse solution, the iteration starts at 0 instead of 108 (= —m). In the course of identifying
and pruning non-lossy links, the value |pAx —y|| gradually decreases to a point (i.8.~ 140)
and increases again. This implies that selecting more oassyllinks does not improve to reduce
the error of||Ax — y|| for i > *, and we take the solution &t as a sparse solution. Moreover,
1* does not change significantly under different incremengdies ofAi.

Next, we investigate the computational complexity of thepmsed algorithm. Although the
minimum norm least square solution is repeatedly computdelg 2 (Step 4), the complexity is
not the number of iterations times higher than that for the murinmorm least square solution.
This is because the dimension of the set of linear equatiensedses as the iterations proceed.
To compare the computational overheads incurred by thewsm@lgorithms considered in this

simulation study, we have implemented them with Matlab fioms, and made the measurement
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using the 'cputime’ function on an IBM Thinkpad T30 (with angle 1.8 GHz Pentium IV

processor and 512 MBytes main memory) that runs Microsofidaiivs XP. Fig. 3 (b) shows
the average CPU times incurred in computing the solutionguMNLS, LINOPT, and SS (with

rankings calculated by criteria Il and Ill). Note that SShwiankings calculated by criteria | and
Il incurs less computational overhead, because it doesampuate SVD of the original matrix

A.

We observe that the computation time of SS with= (n — m)/10 is only twice as much
as that of MNLS, even though SS requires SVD be computed teasti As A: decreases,
the computation time of SS also linearly increases. As coetpavith LINOPT, SS withA =
(n —m)/10 incurs approximately two orders of magnitude smaller cotajon overhead than
LINOPT. As reported in [13], although the Markov Chain Mor@arlo (MCMC) with Gibbs
sampling outperforms LINOPT, it is also computationallyaghumore expensive than LINOPT.

Hence, we do not consider MCMC with Gibbs sampling techniguihe simulation study.

B. Comparison w.r.t. Similarity

Fig. 4 gives the cosine distances for two possible fractafnison-lossy linksf = 0.9 and 0.7
under two loss rate distributionsRD; and LRD, in 10 topologies (Topologies 0-9). Whefh
= 0.9, only 10 % of links are lossy, and the assumption of gplrssy links holds. On the other
hand, whenf = 0.7, the assumption does not really hold, and we can stuah&h or not, and
to what extent, the proposed algorithm renders reasonabléts.

Several observations are in order. First, SS gives a larggeine distance than both MNLS
and LINOPT under most cases, and achieves the best perfoemélote that the obtained
cosine distance varies from 6.54 (Topology 8 in Fig. 4 (c)il &am 9.32 (Topology 5 in Fig.
4 (b)) and highly depends on the network topology used in kitrmn. Under LRD, (Fig. 4
(c) and (d)) where the link loss rates are distributed in gdarange, the lossy links can be
more clearly separated and SS gives better improvementititoes underLRD, (Fig. 4 (a)
and (b)). Second, MNLS and LINOPT give almost the same coecemnd false positive rates.
Recall that MNLS minimizes the 2-norm of while LINOPT does the 1-norm. Based on this
observation, we conclude that it is not necessary to soleditiear optimization problem, as it
is computationally more expensive and yields approxinyate® same results.

Fig. 5 (a) gives actual and estimated loss rates under treerdie distributionsLRD; in
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Fig. 4. Similarity measure for MNLS, LINOPT, and SS in a véyief topologies.

Topology 1. Recall that lossy links have loss rates in thegeaof 0.05 — 0.1, and non-lossy
links have loss rates in the range of 0 — 0.01. If the estimatigerfect, the loss rates lie on the
straight line from the origin to (10,10). We observe that tradghe estimates are below the line,
which implies the loss rates are under-estimated under ipethods. However, as compared to
MNLS, SS gives the larger estimate that is close to the idealih most cases. The reason is
that the sparse solution selects a small number of links and asstigmparatively larger loss

rates on them, while the minimum norm least square solutamthe tendency to spread small
loss rates to a number of linkén general, SS gives more accurate estimates under thezeiff

topologies as shown in Fig. 5 (b) — (d).
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Fig. 5. Real and estimated loss rates under the minimum neast square solution (MNLS) and the sparse solution (SS) in
the case off = 0.9.

C. Comparison w.r.t. Coverage and False Positive Rate

Fig. 6 and 7 show the performances of loss rate estimatioaring of the coverage and the
false positive rate under the loss rate distributidiidD, and LR D, respectively. Overall, the
performance trends with respect to the coverage and the falsitive rate shown in Figs. 6 and
7 match that of the cosine distance in Fig. 4 because therpsafece metrics highly depend on
network topologies. For instance, the algorithms achiesteb performance for comparatively
small networks, e.g., Topologies 0 and 5 in Table I.

Among all the algorithms, SS achieves the highest coveragke Wweeping the lowest false
positive rate for most cases. This result implies that it asgible to identify more accurately
lossy links by exploiting the sparse distribution of losgks. On the other hand, because the
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Fig. 6. Performance (in terms of the coverage and the falsgiy®rate) of MNLS, LINOPT, and SS for loss rate distrilouti
LRD; in a variety of topologies.

performance dramatically changes according to the simounlaetting, we carry out an empirical

study in Section VI to further investigate the performanesdd on real-life traces.

V1. EXPERIMENTS BASED ON THE RoofnetDATA TRACES

To evaluate the proposed algorithm in real environments)everage the empirical traces
available in the MIT Roofnet project [1]. As discussed in t8atIV-A, we construct the logical
links (and the corresponding topology) for each transmrssate with the use of received signal
strengths. The data traces provide us with the link losssyaaad we compute the loss rate
of a path using Eq. (2). With the “derived” topology and thehpkpss rates, we compute the
estimated link loss rate using MNLS, LINOPT, and SS, and ammphem with the actual link
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Fig. 7. Performance (in terms of the coverage and the falsiiy®rate) of MNLS, LINOPT, and SS for loss rate distrilouti
LRD- in a variety of topologies.

loss rates. Note that with the path loss rates measured éetemd-nodes on the Internet it is
not possible to directly validate/invalidate algorithroecause the link loss rates at intermediate
nodes are not available.

Table Il gives the cosine distances under MNLS, LINOPT, aBd & the transmission rate
of 1, 2, 5.5, and 11 Mb/s. Although the link loss rates in vaesl network are believed to be
much higher than those in wired networks (i.e., lossy links reot sparse), SS still achieves
the best performance with respect to the similarity undethal cases. As a matter of fact, the
performance discrepancy is much more salient between SSM&HE/LINOPT.

Fig. 8 (a) — (d) show the coverage and the false positive ratenwve take 2 or 6 links as the
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TABLE I

SIMILARITY MEASURE IN THE WIRELESS MESH NETWORK

bandwidth (Mb/s)|| MNLS | LINOPT | ss |

25

1 0.747 0.875 0.959
2 0.718 0.845 | 0.951
5.5 0.645 0.785 | 0.909
11 0.741 0.742 0.814
2 lossiest links € = 2)
100 50
MNLS -+
MNLS -+ ™, LINOPT ---0---
90  LINOPT ---o--- d o 40t SS = 1
SS —=— S ) A,
< e | T ¥
9:7 80 | 1 S 30¢ 1
— E S ‘\‘ \“
S 10} 1 S 20 N
L -+ . ) r N
: o @ ;
60 1 £ 10+t N
50 : 0 - ‘
1 2 55 11 1 2 5.5 11
transmission rate (Mb/s) transmission rate (Mb/s)
(a) coverage (%) (b) false positive rate (%)
6 lossiest links € = 6)
70
««"”’/’h\
z o
S S 0t o
()
g 2
S 50t e S 40t
<) > a
o %
w0 F g e | 8 30t
30 : : 20 : :
1 2 55 11 1 Mb/s 2 Mb/s 5.5 Mb/s 11 Mb/s

transmission rate (Mb/s)

(c) coverage (%)

Fig. 8. Performance (in terms of the coverage and the falsdiy® rate) in the wireless mesh network.
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TABLE 11l

MEAN AND MEDIAN OF ABSOLUTE ESTIMATION ERRORS IN THE WIRELESSIESH NETWORK.

mean of absolute errors (%) median of absolute errors (%)

bandwidth (Mb/s)
MNLS \ LINOPT \ ss || MNLS \ LINOPT \ ss

9.6 7.38 4.58 5.26 4.10 2.50
2 11.03 8.66 5.10 9.10 6.24 1.97
55 11.57 9.44 5.21 8.29 8.05 4.53
11 13.22 13.06 11.30 6.79 6.39 5.06

most lossy links depending on the estimated loss rates. &S tjie largest coverage and the
smallest false positive rate in all the cases. In particasishown in Fig. 8 (a) and (b), if 2 links
with the largest link loss estimates under SS are selectgdtansmission rates of 1, 2, and 11
Mb/s, they are actually the most lossy links in the wirelessmork with a probability of 1. In
Fig. 8 (c) and (d), the coverage and the false positive rate gealler and larger, respectively,
as the transmit rate increases. This is due to the fact tlealirtks incur higher loss rates at a
high transmission rate and the distribution of the link lost®s is less sparse (Fig. 1 (b)).

In the course of carrying out the experiment, we also find &évain though the topology is
constructed using the traces of received signal strengthesy links still incur packet loss rates
close to 1. In this case, SS successfully identifies the hmkis high lossy rates and assign them
high loss estimates while MNLS and LINOPT give inaccuratiéneses.

Table Il shows the statistics of absolute estimation etrdn all the cases, SS gives the
smallest mean and median errors. Although the link loss riatevireless network are believed
to be much higher than those in wired networks (i.e., logs¥sliarenot sparse), SS still achieves

the best estimation performance under most cases.

VIlI. CONCLUSION

In this paper, we have considered the problem of estimabaged on end-to-end path loss
rates, loss rates of internal links. It has been shown tleatrthximum likelihood estimate (MLE)
for link loss rates leads to an under-determined systermeéliequations. Although most existing
work uses the minimum norm solution as the solution to thidemtetermined linear system,

we show that there is room for further improvement. We exploé statistical knowledge that
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lossy links are sparse in real operating networks and faatawd new optimization problem that
minimizes the number of lossy links, subject to satisfyihg tet of linear equations. We then
propose an iterative algorithm to solve the optimizatioolgem by identifying non-lossy links
and pruning columns that correspond to non-lossy links fileematrix that characterizes the set
of linear equations. The process of identifying non-lossid is performed using three different
criteria (and a combination thereof) determined by thréfer@int methods: basis selection, sorting
of path loss rates, and solving the minimum norm least squaxglem. We show via simulation
and empirical studies on the Roofnet traces that (i) the caatipnal complexity of the iterative
algorithm is comparable to that of MNLS (and two orders of magle smaller than LINOPT);
and (ii) the sparse solution obtained under the iteratigerhm achieves high coverage and
incurs a small number of false positives under various ngtvgoenarios.

As part of our future work, we will further investigate thesiges of i) how to improve the
iteration procedure by using the rank information of theuestl matrix, and ii) how to predict
the identification performance in advance for a given ragutimatrix A. We will also carry out
empirical experiments on traces obtained on large-scaleonks to further validate and evaluate

the proposed iterative algorithm.
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