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on Delay Measurement
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Abstract

In this paper, we consider the problem of how to represent thenetwork distances between Internet

hosts in a Cartesian coordinate system to facilitate estimate of network distances among arbitrary

Internet hosts. We envision an infrastructure that consists of beacon nodes and provides the service

of estimating network distance between pairs of hosts without direct delay measurement. We show

that the principal component analysis (PCA) technique can effectively extract topological information

from delay measurements between beacon hosts. Based on PCA,we devise a transformation method

that projects the raw distance space into a new coordinate system of (much) smaller dimensions.

The transformation retains as much topological information as possible and yet enables end hosts to

determine their coordinates in the coordinate system. The resulting new coordinate system is termed

as theInternet Coordinate System (ICS). As compared to existing work (e.g., IDMaps and GNP), ICS

incurs smaller computation overhead in calculating the coordinates of hosts and smaller measurement

overhead (required for end hosts to measure their distancesto beacon hosts). Finally, we show via

experimentation with both real-life and synthetic data sets that ICS makes robust and accurate estimates

of network distances, incurs little computational overhead, and its performance is not susceptible to the

number of beacon nodes (as long as it exceeds certain threshold) and the network topology.
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I. INTRODUCTION

Discovery of the Internet topology has many advantages for design and deployment of topology

sensitive network services and applications, such as nearby server selection, overlay network

construction, routing path construction, and peer-to-peer computing. The knowledge of network

topology enables each host to make better decisions by exploiting its topological relations with

other hosts. For example, in peer-to-peer file sharing services such asNapster, Gnutella, and

eDonkey, a client can download shared files from a peer that is closer to itself, if the topology

information is available. Among several categories of approaches to infer network topology, the

measurement based approach may be the most promising, whereby the network topology can be

constructed based on several network properties, such as bandwidth, round-trip time, and packet

loss rate. In this paper, we focus on topology construction based on end-to-end delay (round-trip

time) measurement, and use the term ”network distance” for the round-trip time between two

hosts.

The primary goal of constructing network topology is to enable estimation of the network

distance between arbitrary hosts without direct measurement between these hosts. Several ap-

proaches have been proposed, among which IDMaps [2] and GNP [3] may have received the

most attention. Both assume a common architecture that consists of a small number of well-

positioned infrastructure nodes (calledbeacon nodes in this paper). Every beacon node measures

its distances to all the other beacon nodes and uses these measurement results to infer the network

topology. A host estimates its distance to the other ordinary hosts by measuring its distances to

beacon nodes (rather than to the other hosts). A host benefitsfrom using this architecture, as it

needs only to perform a small number of measurements and willbe able to infer its network

distance to a large number of hosts (such as servers).

One important issue in realizing these measurement architectures is how to represent the

location of a host. IDMaps and Hotz’s triangulation [4], [5], for example, use the original

distances to beacon nodes to represent the location of a host, while GNP [3] and Lighthouse [7]

transform the original distance data space into a Cartesiancoordinate system and uses coordinates

in the coordinate system to represent the location. As will be discussed in Section III, the major

advantage of representing network distances in a coordinate system is that it enables extraction

of topological information from the measured network distance data. As a result, the accuracy
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in estimating the distance between two arbitrary hosts willbe improved. This is especially true

when the number of available beacon nodes is small. To construct a new coordinate system,

GNP formulates an optimization problem that minimizes the discrepancy between the measured

network distance and the distance computed by a distance function in a coordinate system, and

applies the Simplex Downhill method to solve the minimization problem. In spite of its many

advantages, as will be elaborated on in Section III, GNP doesnot guarantee that a host has a

unique coordinate in a coordinate system. Depending on the initial value used in the Simplex

Downhill method, a single host may have different coordinates.

In this paper, we present a new coordinate system called theInternet Coordinate System

(ICS). The distances from a host to beacon nodes are expressed as a distance vector, where the

dimension of the distance vector is equal to the number of beacon nodes. As each beacon node

defines an axis in the distance data space, the bases may be correlated. We apply the principal

component analysis (PCA) to projects the distance data space into a new, uncorrelated and

orthogonal Cartesian coordinate system of (much) smaller dimensions. The linear transformation

essentially extracts topology information from delay measurements between beacon nodes and

retains it in a new coordinate system. By taking the first several principal components (obtained

in PCA) as the bases, we can construct the Cartesian coordinate system of smaller dimensions

while retaining as much topology information as possible.

Based on the PCA-derived Cartesian coordinate system, we then propose a method to estimate

the network distance between arbitrary hosts on the Internet. The network distances between

beacon nodes are first analyzed to retrieve the principal components. The first several components

are scaled by a factor (such that the Euclidean distances in the new coordinate system approximate

the measured distances) and used as the new bases in the coordinate system. The coordinate of a

host is then determined by multiplying its original distance vector to (a subset of) beacon nodes

with the linear transformation matrix consisting of the principal components. As compared to

GNP, ICS is more computationally efficient because it only requires linear algebra operations.

In addition, the location of a host is uniquely determined inthe coordinate system. Another

advantage of ICS is that it incurs smaller measurement overhead, as a host does not have to

make delay measurement toall the beacon nodes, but only to a subset of beacon nodes. This is

especially desirable in the case that some of the beacon nodes are not available (due to transient

network partition and/or node failure). Finally, we show via Internet experimentation with real-
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life data sets that ICS is robust and accurate, regardless ofthe number of beacon nodes (as long

as it exceeds certain threshold) and the complexity of network topology.

The rest of the paper is organized as follows. In Section II, we provide the background

material and define a distance coordinate system using linear algebra. In Section III, we give a

summary of related work in the literature and motivate the need for a new coordinate system. In

Sections IV–V, we first introduce PCA and then elaborate on ICS. Following that, we present

in Section VI experimental results, and conclude the paper in Section VII.

II. PRELIMINARY

The topology of the Internet can be modeled in a coordinate system based on the delay

measured between hosts. First we consider araw distance space. Each host measures the

network distance (i.e., the round trip delay) to the other hosts usingping or traceroute. Under

the assumption that there existm hosts, the coordinate of a hostHi in anm-dimensional system

can be represented by the distance vector:

di = [di1, . . . , dim]T , (1)

wheredij is the network distance measured by theith host to thejth host anddii = 0. In general,

dij 6= dji because the forward and reverse paths may have different characteristics. The overall

system is represented by anm-by-m distance matrixD, whoseith column is the coordinate of

hostHi:

D = [d1, . . . ,dm] . (2)

HereD is a non-symmetric square matrix with zero diagonal entries. This representation is quite

simple and intuitive, but contains too much redundant information as every host defines its own

dimension in the coordinate system.

To reduce the redundancy of the above representation, we then represent the network distances

between hosts in ageometric coordinate system. In this paper, we will study how to construct

a coordinate system of the least possible dimension, while retaining as much topological infor-

mation as possible. Under the assumption that a hostHi has the coordinatexi in a coordinate

system, the network distancedij from the hostHi to a hostHj can be estimated without direct

measurement by computing a distance metric functionfd, (i.e., dij ≈ d̃ij = fd(xi,xj)). The
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generalized distance metric function [8] is defined as

Lp(xi,xj) =

(

m
∑

k=1

|xik − xjk|
p

)
1

p

. (3)

Some of the most important metrics are the Manhattan distance L1, the Euclidean distanceL2,

and the Chebyshev distanceL∞. In particular, it has been shown thatL∞ can be expressed as

L∞(xi,xj) = lim
p→∞

Lp(xi,xj) = max
k

|xik − xjk|.

Note that for a coordinate based approach, violation to the triangle inequality of network distance

measurements may degrade the performance of the distance estimation. Fortunately it has been

shown in [6] that violation to the triangle inequality violations is not particularly frequent through

various measurement data sets.

III. RELATED WORK

A. Methods in the distance data space

Several methods have been proposed to estimate the network distance between hosts on the

Internet. These methods envision an infrastructure in which servers (beacon nodes) measure

network distances between one another, and a clientHa (ordinary host) infers its distance to

some other hostHb based on the distance information between servers. Hotz defined, for a host

Ha, a distance vectorda = [da1, . . . , dam]T [4], where dai is the measured distance to theith

beacon node fori ∈ {1, . . . , m} and m is the number of beacon nodes. Then, the network

distancedab between hostsHa andHb was shown to be bound by:

max
i

|dai − dbi| ≤ dab ≤ min
i

(dai + dbi). (4)

Note that the lower bound is the Chebyshev distance between the two vectors,da anddb. Hotz

also showed that the average of the upper and lower bounds generally gives a better estimate

of the distance than either bound. Guytonet al. later applied Hotz’s triangulation method to

calculate the distances to various servers and to locate nearby ones on the Internet [5].

A global architecture for estimating Internet host distances, calledthe Internet Distance Map

Service, IDMaps, was first proposed by Franciset al. [2]. The architecture separates beacon nodes

(called tracers) that collect and distribute distance information from clients that use the distance

map. Each tracer measures the distances to IP address prefixes (APs) that are close to itself.
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A client first determines its own AP and the autonomous system(AS) the AP is connected

to. The client then runs a spanning-tree algorithm over the distance information gathered by

tracers to find the shortest distance between its AS and the ASthat the AP of the destination

belongs to. This distance is taken as the estimated distance. Methods of this type (i.e., methods

that represent network distances in a data space) neither analyze delay measurements nor infer

network topology. Consequently, their performance depends heavily on the number and placement

of beacon nodes. If the number of beacon nodes is small, the estimation performance may not

be good.

In order to extract topological information, Ratnasamyet al. [9] proposed a binning scheme.

A bin is defined as the list of beacon nodes in the order of increasing delay. The bin of a

host indicates the relative distances to all the beacon nodes. For example, if the bin of a host

is ”HaHcHb”, beacon nodeHa is the closest to the host, andHb is the farthest to the host.

The authors applied the binning scheme to the problems of constructing overlay networks and

selecting servers. A host joins an overlay network node or selects a server whose bin is most

similar to its own bin.

B. Methods in the geometric coordinate system

Ng et al. proposed a coordinate-based approach, calledGlobal Networking Positioning (GNP)

[3]. Instead of using the raw network distances, GNP represents the location of each host in a

geometric space, in which the distance between two hosts is defined as a distance functionfd.

The major advantage of representing network distances in a coordinate system is its capability to

extract topological information from the measured networkdistances. As a result, the accuracy

in estimating the distance between two arbitrary hosts willbe improved especially in the case

that the number of beacon nodes is small.

Two optimization problems have been considered in GNP in order to obtain the coordinates

of beacon nodes and hosts in the coordinate system. The first problem obtains the coordinates

of beacon nodes in GNP by minimizing the following objectivefunction:

J1 =
∑

i,j

E
(

dij , f
d(xi,xj)

)

, (5)

whereE is an error function (e.g., square error),dij is the measured distance between theith and

jth beacon nodes, andxi is the coordinate of theith beacon node in the coordinate system. The
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second optimization problem determines the coordinate of an ordinary hostHh by minimizing

the following cost function:

J2 =
∑

i

E
(

dhi, f
d(xi,xh)

)

, (6)

wheredhi is the measured distance between hostH and theith beacon nodes, andxh is the

coordinate of the hostH. GNP tackles both optimization problems using the Simplex Downhill

method [10]. Unfortunately, the Simplex Downhill method only gives a local minimum that is

close to the starting value and does not guarantee that the result is unique in the case that the

cost functions are not (strictly) convex. (The cost functions expressed in Eqs. (5) and (6) are not

strictly convex.) It is stated in [3] that the first optimization problem may have an infinite number

of solutions, and any solution is sufficient. If the solutionto the first optimization problem is

a good approximation of a global minimum, the coordinates ofbeacon nodes thus calculated

suffice in the first problem. However, this is not the case in the second optimization problem.

A host in GNP may have different coordinates depending on thestarting values used in the

Simplex Downhill method. The fact that ordinary hosts may have non-unique coordinates may

lead to estimation inaccuracy. We demonstrate the problem in the following example.

Example 1: (Problem with GNP) Consider four hosts, two of which are located in one

autonomous system (AS), and the other two in another AS. Alsoassume (for demonstration

purpose) that the distance between two hosts in the same AS is1 while the distance between

two hosts in different ASs is 3. Then the topology can be expressed using the following distance

matrix D:

D =















0 1 3 3

1 0 3 3

3 3 0 1

3 3 1 0















.

In the Euclidean space model of GNP, the first cost functionJ1 in two-dimensional coordinate

system can be written as

J1 =
∑

(i,j)=(1,2),(3,4)



1 −

√

√

√

√

2
∑

k=1

(xik − xjk)2





2

+
∑

(i,j)=(1,3),(1,4),(2,3),(2,4)



3 −

√

√

√

√

2
∑

k=1

(xik − xjk)2





2

.

We solve the optimization problem using the ’fminsearch’ function in Matlab, which implements

the Simplex Downhill method, with the starting values,xs
1 = [0, 0]T , xs

2 = [1, 1]T , xs
3 =
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Fig. 1. The cost function for the coordinate of an ordinary host in Example 1

.

[−1,−1]T , and xs
4 = [0, 0]T . The coordinates of the beacon nodes calculated with this set of

starting values arex1 = [0.4433, 2.0048]T , x2 = [1.2262, 1.4248]T , x3 = [−0.5137,−0.9240]T ,

and x4 = [−1.2966,−0.3440]T . Note thatL2(x1,x2) = 0.9743 ≈ 1, L2(x1,x3) = 3.0812 ≈ 3

and so on.

Now assume that a hostH measures its distances to four beacon nodes, and obtains a distance

vector dh = [1, 4, 1, 4]T . The cost functionJ2 in the second optimization problem (Eq. (6))

becomes

J2 =
∑

i=1,3



1 −

√

√

√

√

2
∑

k=1

(xik − xhk)2





2

+
∑

i=2,4



4 −

√

√

√

√

2
∑

k=1

(xik − xhk)2





2

.

Figure 1 depicts the cost functionJ2 with respect toxh1 and xh2. The cost function has

two local minima at(1.2866,−0.9130) and (−1.3571, 1.9938). Therefore,xh can be either

[1.2866,−0.9130]T or [−1.3571, 1.9938]T depending on the starting values of the Simplex Down-

hill method. If the starting value is (1,-1), the Simplex Downhill method renders the former local

minimum (1.2866,−0.9130). This implies that GNP does not guarantee a unique mapping from

the raw distance vector to the Cartesian coordinate. 2

Our proposed approach, ICS, shares the similarity with GNP in that it also represents locations
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of hosts in a Cartesian coordinate system instead of a raw distance space, and consequently,

can extract topological information from measured networkdistances. ICS, however, provides a

unique mapping from the distance space to the Cartesian coordinate system (and thus yields a

more accurate representation). In addition, it has the following advantages:

• With the use of principal component analysis (PCA), a host can calculate its coordinates

by means of basic linear algebra (e.g., the singular value decomposition and matrix multi-

plication). The computational overhead is reduced.

• Unlike all the other previous work, a host does not have to measure its distance toall

the beacon nodes, but instead to a subset of beacon nodes. Themeasurement overhead is

reduced.

It has come to our attention that Tang and Crovella [6] also applied principal component

analysis to project distance measurements into a Cartesiancoordinate system with smaller

dimensions. The authors considered the coordinate of a hostin the coordinate system as the

distances tovirtual landmarks while the coordinate in the distance data space represents the

distances to actual beacon nodes (landmarks). For the sake of scalability, the authors also devised

a coordinate exchanging method among multiple coordinate systems.

Another technique that embeds the Internet graph into a vector space islighthouse [7].

Similarly, lighthouse uses a linear transformation to compute the coordinates of hosts. However,

unlike ICS and virtual landmarks, lighthouse applies the Gram-Schmidt process to compute

an orthogonal basis based on the intra-lighthouses distances. This is achieved through the QR

decomposition as opposed to singular value decomposition (SVD, used in principal component

analysis). The key advantage of lighthouse is that a host hasflexibility in choosing its set of

landmarks (termed as lighthouses) in a distributed manner.

IV. PRINCIPAL COMPONENT ANALYSIS (PCA)

We now discuss how to extract topological information from the distance matrixD (Eq. (2)).

In Example 1, the dimension of the distance matrixD is four. As hosts in the same AS are very

close to each other, the distance can be represented in a two-dimensional space by projecting

their coordinates into two-dimensional space. The dimensionality depends not on the dimension

m of the distance matrixD but on the network topology, and can be much smaller thanm.
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x
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Fig. 2. Example of the principal component analysis

We apply principal component analysis (PCA) [11], [13], [14] to reduce the dimension of

the distance matrix while retaining as much topological information as possible. In a nutshell,

PCA transforms a data set that consists of a large number of (possibly) correlated variables to

a new set of uncorrelated variables,principal components, which can characterize the network

topology. The principal components are ordered so that the first several components have the

most important features of the original variables. In particular, thekth principal component can

be interpreted as the direction of maximizing the variationof projections of measured distance

data while orthogonal to the first(k − 1)th principal components [13]. We use the following

example to illustrate the concept.

Example 2: Figure 2 gives an example of performing PCA for two correlated variables,x

and y. With the use of PCA, we obtain two principal components,pc1 andpc2. As shown in

Fig. 2, the first principal componentpc1 represents the direction of the maximum variance. The

one-dimensional linear representation is calculated by projecting the original data ontopc1. 2

Now the question is how to determine these principal components. The most common approach

is to use singular value decomposition (SVD). Specifically,the SVD ofD in Eq. (2) is obtained
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by

D = U · W · VT , (7)

W =















σ1

σ2

. . .

σm















,

whereU and V are column and row orthogonal matrices, andσi’s are the singular values of

D in the decreasing order (i.e.,σi ≥ σj if i < j). Note thatDTD = (UWVT )T (UWVT ) =

V(WTW)VT . This means that the eigenvectors ofDTD make upV with the associated (real

nonnegative) eigenvalues of the diagonal ofWTW [12]. Similarly, DDT = UT (WWT )U.

The columns of them × m matrix U = [ u1, . . . ,um ] are the principal components and the

orthogonal basis of the new subspace. By using the firstn columns ofU denoted byUn, we

project them-dimensional space into a newn-dimensional space:

ci = UT
n · di = [ u1, . . . , un ]T · di. (8)

We re-visit Example 1 to illustrate the procedure.

Example 3: (Example revisited) Consider the four hosts and the corresponding distance matrix

in Example 1. We obtain the principal components via singular value decomposition (Eq. (7)):

U =















−1
2

−1
2

1√
2

0

−1
2

−1
2

− 1√
2

0

−1
2

1
2

0 − 1√
2

−1
2

1
2

0 1√
2















, W =















7 0 0 0

0 5 0 0

0 0 1 0

0 0 0 1















.

The original distance vector of the first host isd1 = [0, 1, 3, 3]T . With the use of Eq. (8), we

can calculate the coordinate of the first host in a two-dimensional coordinate system as

c1 = UT
2 d1 =





−1
2

−1
2

−1
2

−1
2

−1
2

−1
2

1
2

1
2



 ·















0

1

3

3















=





−7
2

5
2



 .

Similarly c2(= c1) = [−7
2
, 5

2
]T and c3 = c4 = [−7

2
,−5

2
]T . Note that PCA assigns the same

coordinate to the two hosts in the same AS because of the low dimensionality. Whenn = 4, U4 =
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TABLE I

AVERAGE PROXIMITY IN ORIGINAL GEOMETRY SPACED

Metric NPD (m = 33) NLANR (m = 113)

L1 5.818 6.964

L2 6.545 6.495

L∞ 12.151 5.504

U, c1 = [−7
2
, 5

2
,−

√
2

2
, 0], c2 = [−7

2
, 5

2
,
√

2
2

, 0], c3 = [−7
2
,−5

2
, 0,

√
2

2
], andc4 = [−7

2
,−5

2
, 0,−

√
2

2
].

In this case (n=m), the mappingci = UT · di is isometric (e.g.,L2(d1,d3) = L2(c1, c3) =

5.0990), and thus the two spaces spanned bydi’s andci’s are the same from the perspective of

geometry (i.e.,L2(di,dj) = L2(ci, cj)).

A. Dimensionality

Another important issue that should be addressed in representing network distances in an-

dimensional coordinate system is how to determine the adequate degree,n, of dimensions in the

coordinate system. This problem has not been extensively studied, and is usually application-

dependent [15]. One of the commonly adopted criteria is the cumulative percentage of variation

that selected principal components contribute to [11]. Thepercentage,tk, of variation accounted

for by the firstk principal components is defined by

tk = 100 ×

∑k

j=1 σj
∑m

j=1 σj

. (9)

One may pre-determine a cut-off value,t∗ of cumulative percentage of variation, and calculate

n to be the smallest integer such thattn ≥ t∗. In the previous example,t1 = 50 %,t2 = 85.7 %,

t3 = 92.9 %, andt4 = 100 %. If t∗ is set to 80 %, then the degree of dimensions should be set

to n = 2.

B. Experimental Results

To investigate whether or not PCA can be used to transform network distances on the Internet

to coordinates in a coordinate system of smaller dimensionsand still retain as much topological

information as possible, we apply PCA to two real-life data sets:
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Fig. 3. Average proximity for the NPD data set ((a)) and the NLANR data set ((b)) under different distance metrics.
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Fig. 4. Eigenvalues and cumulative percentage of variationfor the NPD data set and the NLANR data set.

• NPD-Routes-2 data set [16]: contains Internet route measurements obtained bytraceroute.

The measurements were made between 33 Internet hosts in the Network Probe Daemon

(NPD) framework from November 3, 1995, to December 21, 1995.We obtain the distance

matrix D in Eq. (2) by taking (for each pair of hosts) the minimum valueof measured

round trip times (RTTs) in order to filter out the queuing delay.

• NLANR: contains the RTT, packet loss, topology, and on-demand throughput measurements

made under the Active Measurement Project (AMP) at NationalLaboratory for Applied

Network Research (NLANR). More than 100 AMP monitors are used to make the mea-

surements [17]. The round trip times between all the monitors are measured every minute,
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and are processed once a day. We use one of the NLANR RTT data sets measured between

113 AMP monitors on April 9, 2003.

We first compare different distance metrics with respect to their quality of representing

topological information. Given that the number of hosts in the data set ism, each host has an

m dimensional distance vector as its coordinate in the raw distance space, and ann dimensional

distance vector in the coordinate system obtained by PCA (1 ≤ n ≤ m). We calculate for each

host the distancesL1, L2, andL∞ (Eq. (3)) to all the other hosts, and determine its closest host

based on the distance calculated in the coordinate system. As the ”closest” host calculated under

the various distance metrics may not be the actual closest host, we define the notion ofproximity

to measure the quality of representing topological information. If the host calculated to be the

closest is thekth closest, the proximity is set tok, k ≥ 1. We average, for each distance metric

used, the proximity over all the hosts.

Table I gives the average proximity in the raw distance space, whose dimension ism = 33

and 113 for the NPD and NLANR data sets, respectively. In the NPD data set,L1 gives the

best performance — the host calculated to be the closest is the 5.818th closest host averagely.

In the NLANR data set,L∞ gives the best performance. These results show that the accuracy

of representing topological information in a raw distance space depends heavily on the distance

metric.

Next we study the (in)effectiveness of using PCA to represent network distances. Figure 3

gives the average proximity with respect to the number of principal components for the NPD and

NLANR data sets. As shown in Fig. 3 (a), when the number of principal components is greater

than 3, the proximity is almost the same as that in the raw distance data space. This means that

the topological information can be effectively represented in a 3-dimensional space instead of

in a 33-dimensional space. Another important observation is that the average proximity in the

new coordinate system of smaller dimensions remains the same regardless of the distance metric

used. The reason why the proximity is independent of the distance metric used is due to the fact

that PCA finds a set of uncorrelated bases to represent the topological information. A similar

trend can be observed in Fig. 3 (b) in which the proximity is almost the same as that in the

distance space when the number of principal components is larger than 10.

Figure 4 plots the eigenvalues and their corresponding cumulative percentage of variation. The

largest eigenvalues are 4760.0 and 7787.3, respectively, for the NPD and NLANR data sets. If
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host 1

host 3

host 2

b-node 1

b-node 2

b-node 3

b-node 4

b-node 5

Fig. 5. An example architecture for the proposed Internet Coordinate System (five beacon nodes and three ordinary hosts).

we set a cut-off threshold oft∗ = 80 %, the smallest value ofn that achieves the threshold for

each data set is, respectively, 9 and 7. In this case,σ9 = 354.7, and the average proximity is

6.54 for the NPD data set, andσ7 = 325.2 and the average proximity is 7.49 for the NLANR

data set.

In summary, we show in this section that the network distanceon the Internet can be repre-

sented, with the use of PCA, in a Cartesian space that uses a (smaller) set of uncorrelated bases.

Moreover, we show that the new coordinate system is less susceptible to the distance metrics

used in representing topological information.

V. INTERNET COORDINATE SYSTEM

A. Overview

We first present a basic architecture for the Internet Coordinate System (ICS). As mentioned in

Section I, the objectives of ICS are i) to infer the network topology based on delay measurement

and ii) to estimate the distance between hosts without direct measurement. Succinctly, the

architecture for ICS consists of a number of beacon nodes that collect and analyze the distance

information. Figure 5 gives an example architecture of ICS with five beacon nodes. Beacon nodes
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periodically measure round trip times (RTTs) to other beacon nodes and construct a coordinate

system. The coordinates of beacon nodes are then calculated, with the use of PCA, based on

the measured RTT data among the five beacon nodes. We will elaborate on how to calculate the

coordinates of beacon nodes in Section V-B.

An ordinary host determines its own location in ICS by measuring its delays to the entire or

partial set of beacon nodes and obtains a distance vector. Asexemplified in Fig. 5, host 1 measures

its distance to five beacon nodes, and obtains a five-dimensional distance vector. The location of

the host in ICS is then calculated by multiplying the distance vector with a transformation matrix.

(We will elaborate on how the transformation matrix is derived and distributed in Section V-C.)

After calculating its own coordinate, host 1 may report its coordinate to a DNS-like server that

keeps coordinates of ordinary hosts. To estimate the network distance to some other host, host

1 may query this DNS-like server which then determines the estimated distance as long as the

coordinate of the other host is kept at the server. In the samemanner, host 1 can also infer which

other host is closer to itself.

B. Calculating the Coordinates of Beacon Nodes

We now elaborate on how we construct ICS based on the measurednetwork distances between

m beacon nodes, and apply PCA (Section IV) to ”transform” the raw distance space to a new

coordinate system of (much) smaller dimensions.

Each beacon node measures its distances to the other beacon nodes, and obtains am-dimensional

distance vectordi in Eq. (1), of which thejth elementdij is the measured distance to thejth

beacon node. An administrative node, which can be elected among beacon nodes, aggregates the

distance vectors of all the beacon nodes, and obtains the distance matrixD in Eq. (2). Then,

the distance matrix is decomposed into three matricesU, W, andV in Eq. (7). Using the first

n principal components, the coordinate of a beacon node is calculated asci = Undi in Eq. (8).

As shown in Section IV-B, this coordinate preserves topological information.

Note that the distance between two beacon nodes calculated by Eq. (8) does not coincide with

its actual measured distance. For instance,L2(c1, c3) = 5 6= d13 = 3 whenn = 2 in Example 3.

To use the coordinates for distance estimation, we apply a simple linear operation,̄ci = αci +β,

so as to minimize the discrepancy between the distance represented in the coordinate system

and the measured distance. As a scaling operation does not affect the distance between two
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coordinates, we only consider the scaling operation with a scaling factorα, i.e., β = 0. The

optimal scaling factorα∗(n) that minimizes the discrepancy between the Euclidean distance in

the new coordinate system of dimensionn and the measured delay, i.e.,L2(c̄i, c̄j) ≈ dij for all

i andj ∈ {1, . . . , m}, can be determined by minimizing the following objective function J(α):

J(α) =

m
∑

i

m
∑

j

(L2(αci, αcj) − dij)
2
. (10)

After a few algebraic operations, the positive solution,α∗, can be shown to be

α∗(n) =

∑m

i

∑m

j dijL2(ci, cj)
∑m

i

∑m

j L2(ci, cj)2
. (11)

The transformation matrix̄Un from a distance vector in the distance space to the coordinate in

ICS is then defined as

Ūn = α∗(n)Un =

∑m

i

∑m

j dijlij
∑m

i

∑m

j l2ij
Un, (12)

wherelij = L2(U
T
ndi,U

T
ndj) and the transformation matrixUn = [u1, . . . ,un] is obtained from

the distance matrixD between beacon nodes and its SVD. The coordinates of beacon nodes are

then calculated as̄ci = ŪT
ndi for all i ∈ {1, . . . , m}.

In summary, the procedure taken to calculate the coordinates of beacon nodes is as follows:

(S1) Every beacon node measures the round trip times to the other beacon nodes periodically.

(S2) An administrative node aggregates the delay information and obtains the distance matrix

D in Eq. (2).

(S3) The administrative node applies PCA in Eq. (7) to obtainthe transformation matrixU.

(S4) The administrative node determines the dimension of the coordinate system using the

cumulative percentage of variation defined in Eq. (9) (with apre-determined threshold

value).

(S5) The administrative node calculates the transformation matrix Un in Eq. (12) from

Eq. (7) and Eq. (11).

Note that the administrative node may be replicated (perhaps in a hierarchical manner) to enhance

fault tolerance and availability. This subject is outside the scope of this paper, but is warrant of

further investigation. We illustrate the above procedure by revisiting Example 1.

Example 4: Assume that the four hosts in Example 1 are beacon nodes. Whenn = 2, c1 =

c2 = [−3.5, 2.5] andc3 = c4 = [−3.5,−2.5]T . By Eq. (11), the scaling factorα is 0.6, and the
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transformation matrix̄U2 is

Ū2 =





−0.3 −0.3 −0.3 −0.3

−0.3 −0.3 0.3 0.3





T

.

Therefore,̄c1 = c̄2 = [−2.1, 1.5] and c̄3 = c̄4 = [−2.1,−1.5]. The distances between two hosts

in different ASs is exactly 3. Whenn=4, α = 0.5927,L2(c̄1, c̄2) = L2(c̄3, c̄4) = 0.8383, and

L2(c̄1, c̄3) = L2(c̄1, c̄4) = L2(c̄2, c̄3) = L2(c̄2, c̄4) = 3.0224. 2

C. Determining The Coordinate of A Host

The procedure that a host takes to determine its coordinate in ICS is as follows: A hostHa

(H1) obtains the list of beacon nodes and the transformationmatrix Un (Eq. (12)) from the

administrative node.

(H2) measures the network distances,la = [la1, . . . , lam]T , to all the beacon nodes usingping

or traceroute, wherelai denotes the delay measured between hostHa and theith beacon

node. (We will discuss how to reduce the number of measurements in Section V-D.)

(H3) calculates the coordinate,xa, by multiplying the measured distance vector with the

transformation matrix, i.e.,xa = ŪT
n · la.

Example 5: Consider the ICS system in Example 4. Assume that hostHa is closer to the AS

where the first two beacon nodes reside, and obtains a distance vector ofla = [1, 1, 4, 4]T . In

(H3), xa = [−3, 1.8]T . In the case ofn = 2, the estimated distances between hostHa and beacon

nodes areL2(c̄1,xa) = L2(c̄2,xa) = 0.94 andL2(c̄3,xa) = L2(c̄4,xa) = 3.42. Assume that host

Hb is far from all four beacon nodes, and obtains a distance vector of lb = [10, 10, 10, 10]T . In

this case,xb = [−12, 0]T , andL2(c̄i,xb) = 10.01 for i = 1, . . . , 4. 2

D. Reducing The Number of Measurements

To discover accurately the topology of the Internet, a sufficient number of beacon nodes should

be judiciously placed on the Internet. (Note that PCA is ableto extract essential topological

information from a set of (perhaps correlated) delay measurements. However, it does not preclude

the important task of placing beacon nodes properly on the Internet so as to represent the network

topology accurately. We will comment on this issue in Section V-E.) On the other hand, for the

sake of scalability, it is not desirable that a client has to measure its round trip times toall the
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beacon nodes. To reduce the measurement overhead incurred by a host, it would be desirable

that a host measures the distance from itself toonly a subset of beacon nodes. This also allows

ICS to operate even in the case that some of the beacon nodes are not available (due to, for

example, transient network partition and/or node failure).

In (H3), the transformation matrix̄UT
n and the original distance vectorla are needed to

calculate the coordinate of a host. The transformation matrix is fixed in ICS once it is calculated

by the administrative node. If hostHa makes delay measurements only to a subset,N , of beacon

nodes, the missing elements inla, i.e., lai, i 6∈ N , have to be inferred.

The procedure for partial measurement is as follows: HostHa randomly choosesk beacon

nodes (k < m) and measures its distances to this subset,N , of beacon nodes. (In our experiments,

we will investigate the effect of the value ofk on the estimation performance.) Instead of

calculating the coordinate by itself, hostHa transmits the distance vectorla with m−k missing

elements to the administrative node. For each missing element lai in la, the administrative node

(i) selects inN a beacon node (say thejth beacon node) that is closest to theith beacon node,

(ii) replaces the missing elementlai with a function of laj (to be discussed below), and (iii)

calculates the coordinate on the behalf of hostHa.

The performance of the partial measurement method depends heavily on how well the missing

elements inla are represented (step (ii)). In order to improve the performance, instead of

directly using the network distance measured to the closestbeacon node, we can leverage Hotz’s

triangulation method (Section III) as follows: As a beacon nodeHb that is not inN has already

measured its distances to other beacon nodes, the distance between hostHa and nodeHb can

be estimated using Hotz’s triangulation method.

E. Enhancing ICS by Clustering

If beacon nodes are well distributed and selected with respect to certain clustering criterion, the

performance is expected to be better [3] because the basis ofthe coordinate system is constructed

based on the measurements between beacon nodes. There are essentially two aspects in which the

notion of clustering can be applied in selecting beacon nodes. On the one hand, if the distances

among hosts that are available to serve as beacon nodes can bemeasured, a clustering algorithm

can be applied to group hosts that are close to one another into clusters [18]. Each host is initially

assigned to its own cluster, and pairs of neighboring clusters are repeatedly merged into a single
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cluster untilk clusters remain. The median node in each cluster is selectedas a beacon node.

This approach serves as a guideline for placement of beacon nodes.

On the other hand, if the beacon nodes have been placeda priori, the clustering technique

can be incorporated into the partial measurement method (Section V-D) as follows: Instead of

randomly selecting of beacon nodes in Section V-D, the administrative node specifies, for a host

Ha, a list of beacon nodes to which hostHa should make delay measurements. The administrative

node applies the clustering technique to form clusters among beacon nodes, and selects for each

cluster a median beacon node. The administrative node then sends hostHa a list of median

beacon nodes. The rest of the operations follow the procedure given in Section V-D.

VI. EMPIRICAL STUDY

To validate the effectiveness of ICS in inferring the Internet topology, we conduct experiments

using both an empirical data set (NLANR) [16] and a syntheticdata set (GT-ITM) [19]. As

discussed in Section IV-B, the NLANR data set contains real delay data measured byping. The

GT-ITM data set, on the other hand, is obtained using the GT-ITM topology generator [19] and

the ns-2 simulator [20]. The quality of a coordinate system can be affected by several factors

such as the number and distribution of beacon nodes and the complexity of the network topology.

With the use of the GT-ITM topology generator, we are able to study ICS under a wide variety

of network topologies, and investigate the effect of network topology on the performance of

ICS. For each data set, we randomly selectm beacon nodes (3 ≤ m ≤ 30).

We compare ICS against with IDMaps, Hotz’s triangulation, and GNP with respect to the

average of estimation errorsEij defined as

Eij =
|dij − L(i, j)|

dij

,

for i, j ∈ {1, . . . , H} and i 6= j. Here H is the number of hosts in the data sets,dij is the

measured distance, andL(i, j) is the estimated distance between theith andjth hosts. IDMaps,

Hotz’s triangulation, GNP, and ICS are implemented as follows:

• IDMaps: Suppose hostsHa andHb are close to theith and thejth beacon nodes (called

tracers in IDMaps), respectively, and their corresponding distances are denoted asdai and

dbj. Then the estimated distance isdai + dbj + dij, wheredij is the distance between theith

andjth beacon nodes.
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Fig. 6. Comparison of IDMaps, Hotz’s triangulation, GNP, and ICS for the NLANR data set (n: dimension of coordinate

system).

• Hotz’s triangulation: With Eq. (4), we calculate three Hotz’s distances, i.e., the lower bound

(denoted aslb), the upper bound (denoted asub), and the average of the two bounds (denoted

asavg).

• GNP: We solve the two optimization problems minimizingJ1 in Eq. (5) andJ2 in Eq. (6) us-

ing the ’fminsearch’ function in Matlab (which implements the Simplex Downhill method).

We vary the dimension of the coordinate system fromn = 2 to 10, and report the most

representative results.

• ICS: We evaluate both the full and partial measurement methods in a coordinate system

with dimension varying fromn = 2 to 10. In the partial measurement method, we compare

the performance between the cases where beacon nodes are randomly selected and are

determined by clustering. The number of beacon nodes which ahost measures its distance

to is set tok = n + 1, 2n, and3n, wheren is the dimension of the coordinate system. In

the partial measurement method, the missing elements in thedistance vectorla of hostHa

are estimated by Hotz’s triangulation (as was discussed in Section V).

A. Results for the NLANR data

Comparison in terms of estimation errors: Figure 6 (a) gives the estimation errors of

IDMaps and Hotz’s triangulation. The error obtained by IDMaps is quite large, but gradually

decreases from 1.32 atm = 3 to 0.40 atm = 30. As the estimate is calculated by the sum of the
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three distancesdai +dbj +dij , if the two beacon nodes are on the shortest path, the estimate well

approximates the network distance. This accounts for the fact that the estimate becomes more

accurate asm increases. The upper bound of Hotz’s triangulation exhibits the same trend as

IDMaps. Asm increases, the probability that the beacon nodes are on the shortest path between

two hosts also increases. The lower bound is quite accurate when m is small. However, the

estimation error increases asm increases. Consistent with the findings in [5], the average of the

two bounds renders a more accurate estimate of the network distance, and is less susceptible to

the number of beacon nodes.

Figure 6 (b) gives the estimation errors of GNP, ICS with the full measurement method,

and Hotz’s triangulation with the average of the two bounds.GNP performs better than Hotz’s

triangulation when the number of beacon nodes is small (m ≤ 15). However, its estimation error

increases asm increases, and becomes almost the same as that of Hotz’s triangulation. This is

probably due to the fact that a local minimum (rather than a global minimum) is selected in the

optimization problems. Consider, for example, the case that there exist twenty beacon nodes and

the dimension of the coordinate system is five. The cost function J1 is minimized in a hundred-

dimensional vector space, i.e., the number of variables in the coordinates of beacon nodes is100.

In general, an optimization problem of high dimensions easily converges to a local minimum,

which in turn leads to inaccuracy in the coordinates of hosts, as explained in Section III-B.

ICS gives the best performance. Considering that the RTT measurement between two hosts

usually exhibits a large variation (the average of the standard deviation of RTT measurements

is approximately 32 % of the RTT measurement), the delay estimated by ICS is quite accurate.

In most cases, it incurs lower estimation errors than IDMaps. It gives the same performance as

GNP whenm < 15 and better performance whenm ≥ 15. Here, we select the dimension of the

coordinate system to be five as the improvement is marginal when n ≥ 5 as shown in the next

figures.

Effect of the coordinate system dimension on the performance: Figure 7 depicts the effect

of the dimension of the coordinate system on the performanceof ICS ((a)) and GNP ((b)). The

estimation error of ICS is the largest when the dimension of the coordinate system is two (n =

2), and improves as the network topology is represented in higher dimensional space. However,

the improvement levels off whenn ≥ 6. Note that the cumulative percentaget6 for n = 6 is

78.14 % in Fig. 4. The estimation error of GNP is the smallest whenn = 4, and is even slightly
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Fig. 7. The effect of the dimension of the coordinate system on the performance of ICS and GNP for the NLANR data set

(n: dimension of coordinate system).

better than that of ICS in the range of5 ≤ m ≤ 16. Note also that the estimation error of GNP

when n = 6 is much larger than that whenn = 4. This is again due to the reason that the

number of variables increases asn increases. This shows that the accuracy of GNP depends on

the selection of the dimension of the coordinate system.

Figure 8 gives the results of ICS with the use of partial measurement method. Amongm beacon

nodes,k beacon nodes are either randomly selected ((a) and (b)), or determined by the clustering

technique [18] ((c) and (d)). The number of measurements made by a host is now proportional

to the coordinate dimensionn, i.e., k = min(n + 1, m) in (a) and (c), andk = min(2n, m) in

(b) and (d). As shown in Fig. 8 (a), whenn = 6, a client measures its distances to six beacon

nodes regardless of the value ofm, and the average of the estimation errors is increased by 20.2

% (from 0.3287 in Fig. 7 (a) to 0.3951). When the number of measurements is doubled in Fig.

8 (b), the average of the estimation errors is increased onlyby 6.0 % (as compared to Fig. 7 (a))

in the case ofn = 6. An encouraging result is that the estimation error does notsignificantly

increase even when the number of measurements is small (i.e., m � k). This is perhaps due to

the fact that measurements made in a coordinate system with the use of more beacon nodes are

more accurate. As shown in Fig. 8 (c) and (d), when the median node of each cluster is chosen

as a beacon node, the estimation errors are comparatively smaller than those in Fig. 8 (a) and

(b), respectively. This implies that the partial measurement method benefits from choosing most

representative beacon nodes (i.e., the median node of each cluster).
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Fig. 8. Performance of ICS with the partial measurement method for the NLANR data set (n: the dimension of coordinate

system,k: the number of measurements, andm: number of beacon nodes).
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Fig. 9. Comparison between ICS and GNP with respect to computational costs incurred in calculating the coordinates of

beacon nodes and ordinary hosts (n: dimension of coordinate system).
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Comparison between ICS and GNP in terms of computational costs: To study the com-

putational costs incurred by ICS and GNP, we have implemented their functions of computing

coordinates with the ’svd’ and ’fminsearch’ functions in Matlab, and made the measurement

by using the ’cputime’ function on an IBM Thinkpad T30 (with asingle 1.8 GHz Pentium IV

processor and 512 MBytes main memory) that runs Microsoft Windows XP. Figure 9 shows the

average CPU time consumed in computing the coordinates of beacon nodes ((a)) and ordinary

hosts ((b)) under ICS and GNP. As shown in Fig. 9 (a), as the number of beacon nodes increases,

the computation time of GNP for calculating the coordinatesof beacon nodes exponentially

increases. When the dimension is 6 and the number of beacon nodes is 30, the computation

time of GNP is 884.06 seconds (about 15 minutes). With ICS, the maximal computation time

is approximately 17.1 milliseconds. Similarly, as shown inFig. 9 (b), the computational time

incurred in calculating the coordinate of an ordinary host can be up to 1.2 seconds under GNP,

while remaining less than 30 microseconds for all cases under ICS. This suggests that ICS incurs

at least an order of magnitude smaller computation overheadin calculating the coordinates than

GNP.

B. Results for the GT-ITM data

We now investigate the effect of topology complexity on the estimation. As mentioned in [19],

the GT-ITM topology generator can be used to create three types of graphs: flat random graphs,

hierarchical graphs, and transit-stub graphs. We generatetwo-level and three-level hierarchical

graphs, each with 400 nodes. Note that each graph has the samenumber of nodes; however,

three-level hierarchical graphs represent more complex network topologies.

Effect of topology complexity on the performance: Figure 10 (a) and (b) depict the perfor-

mance of IDMaps, Hotz’s triangulation, GNP, and ICS under the two-level hierarchical topology.

As shown in Fig. 10 (a), methods that represent the network topology in a distance space give

large estimation errors when the number of beacon nodesm is small, and their performance

gradually improves asm increases. Among IDMaps and the three versions of Hotz’s triangulation,

the lower bound of Hotz’s triangulation gives the best performance. As shown in Figure 10 (b),

between the two coordinate-system-based approaches, GNP renders large estimation errors, and

the errors increase asm increases. The estimation error of ICS, on the other hand, is0.30 at

m = 5, decreases asm increases, and becomes0.17 at m = 30.
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(a) IDMaps and Hotz’s triangulation
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Three-level hierarchical topology
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(c) IDMaps and Hotz’s triangulation
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Fig. 10. Comparison of IDMaps, Hotz’s triangulation, GNP, and ICS for the GT-ITM data set (n: dimension of coordinate

system).

As shown in Fig. 10 (c) and (d), all the approaches, except ICS, give larger estimation errors

under three-level hierarchical topologies. In particular, the performance of GNP deteriorates quite

significantly. ICS gives almost the same performance as in two-level hierarchical topologies. This

result shows that PCA (upon which ICS is built) can effectively extract topological information

than the minimization optimization of cost functionsJ1 and J2 in Eq. (5) and Eq. (6) used in

GNP.

Effect of the dimension of coordinate systems on the performance: Figure 11 depicts the

effect of the coordinate system dimension on the performance of ICS with the full and partial

measurement methods. The number of measurements made in thepartial measurement method
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(c) Full measurement
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(d) Partial measurement

Fig. 11. Effect of the dimension of the coordinate system on the performance of ICS for the GT-ITM data set (n: dimension

of coordinate system).

is set tok = min(2n, m), and beacon nodes to which the distance measurement is made are

randomly selected amongm beacon nodes. Under all the cases, as the dimension,n, of the

coordinate system increases, the estimation errors decrease. As shown in Fig. 11 (a), there

is virtually no performance improvement whenn ≥ 3, which implies that a three-dimensional

coordinate space is sufficient to represent the two-level hierarchical topology. However, when the

partial measurement method is applied, the estimation error increases from 0.209 to 0.407 in the

case ofn = 3. This means that even though a three-dimensional space is sufficient to represent

the network topology, the number of measurements required should be larger than six in order

to determine the coordinates of hosts accurately. As shown in Fig. 11 (c), the estimate made by
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ICS is quite accurate under the three-level hierarchical topology, and the errors decrease asn

increases. As shown in Fig. 11 (d), the estimation errors become larger when partial measurement

is made, but if the number of measurement is larger thank = 12, the estimation error can be

controlled to fall below 0.32.

In summary, IDMaps and the upper bound of Hotz’s triangulation are inaccurate in the case

that the number,m, of beacon nodes is small. Their performance improves asm increases. In

contrast, the lower bound of Hotz’s triangulation is accurate in the case thatm is small for the

NLANR and GT-ITM data sets, and the errors become larger for the NLANR data set asm

increases. As compared with the two bounds of Hotz’s triangulation, the average of the two

bounds is less sensitive to the number of beacon nodes. GNP can estimate distances accurately

only when the number of variables in the corresponding optimization problems is small, i.e., the

number of beacon nodes and the dimension of the coordinate systems are small. ICS provides

accurate estimates under most cases, regardless of the number of beacon nodes (as long as it

exceeds a certain threshold), the dimension of the coordinate systems, and the level of topology

complexity. ICS with the partial measurement method reduces the number of measurements

required, while not significantly degrading the performance. This is especially true when the

number of beacon nodes and the dimension of the coordinate systems are large. Moreover, more

accurate estimation can be made with the partial measurement method if beacon nodes are chosen

with respect to certain clustering criterion.

VII. CONCLUSION

In this paper, we present a new coordinate system, called theInternet Coordinate System (ICS),

for measuring the network distance over the Internet. We show that the principal component anal-

ysis (PCA) technique can effectively extract topological information from delay measurements

between beacon hosts. Based on PCA, we devise a transformation method that projects the raw

distance space into a new coordinate system of (much) smaller dimensions. The transformation

retains as much topological information as possible and yetenables end hosts to determine

their locations in the coordinate system based on a small number of measurements. We show

via experiments using both real measured and synthetic datasets that ICS can make accurate

and robust estimates of network distances between end hostsand is much less computationally

expensive, regardless of the number of beacon nodes, the dimension of coordinate systems, and
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the level of topology complexity. Finally, we show the number of measurements made by a host

can be further reduced without significant loss of accuracy.
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