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Abstract

In this paper, we consider the problem of how to represenh#ie/ork distances between Internet
hosts in a Cartesian coordinate system to facilitate estinoh network distances among arbitrary
Internet hosts. We envision an infrastructure that cosgi$tbeacon nodes and provides the service
of estimating network distance between pairs of hosts withdirect delay measurement. We show
that the principal component analysis (PCA) technique dfectively extract topological information
from delay measurements between beacon hosts. Based onviRCdevise a transformation method
that projects the raw distance space into a new coordinatersy of (much) smaller dimensions.
The transformation retains as much topological informmatie possible and yet enables end hosts to
determine their coordinates in the coordinate system. Ekalting new coordinate system is termed
as thelnternet Coordinate System (ICS). As compared to existing work (e.g., IDMaps and GNP), ICS
incurs smaller computation overhead in calculating therdioates of hosts and smaller measurement
overhead (required for end hosts to measure their distatocégacon hosts). Finally, we show via
experimentation with both real-life and synthetic data $kat ICS makes robust and accurate estimates
of network distances, incurs little computational overhesnd its performance is not susceptible to the

number of beacon nodes (as long as it exceeds certain thagsimal the network topology.
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. INTRODUCTION

Discovery of the Internet topology has many advantagesdsigth and deployment of topology
sensitive network services and applications, such as ypesgbver selection, overlay network
construction, routing path construction, and peer-ta-geenputing. The knowledge of network
topology enables each host to make better decisions by iérpgldats topological relations with
other hosts. For example, in peer-to-peer file sharing sesvsuch adNapster, Gnutella, and
eDonkey, a client can download shared files from a peer that is claséself, if the topology
information is available. Among several categories of apphes to infer network topology, the
measurement based approach may be the most promising,byheeenetwork topology can be
constructed based on several network properties, suchnasvizith, round-trip time, and packet
loss rate. In this paper, we focus on topology constructesed on end-to-end delay (round-trip
time) measurement, and use the term "network distance’Herround-trip time between two
hosts.

The primary goal of constructing network topology is to deabstimation of the network
distance between arbitrary hosts without direct measunemetween these hosts. Several ap-
proaches have been proposed, among which IDMaps [2] and GNmdy have received the
most attention. Both assume a common architecture thatistersf a small number of well-
positioned infrastructure nodes (callbeacon nodes in this paper). Every beacon node measures
its distances to all the other beacon nodes and uses thesenma@@nt results to infer the network
topology. A host estimates its distance to the other orgihasts by measuring its distances to
beacon nodes (rather than to the other hosts). A host befrefitsusing this architecture, as it
needs only to perform a small number of measurements andbwitible to infer its network
distance to a large number of hosts (such as servers).

One important issue in realizing these measurement acthits is how to represent the
location of a host. IDMaps and Hotz’s triangulation [4], ,[3pr example, use the original
distances to beacon nodes to represent the location of awdaigt GNP [3] and Lighthouse [7]
transform the original distance data space into a Cartesiardinate system and uses coordinates
in the coordinate system to represent the location. As wiltlscussed in Section lll, the major
advantage of representing network distances in a cooelgyatem is that it enables extraction

of topological information from the measured network dista data. As a result, the accuracy

June 3, 2004 DRAFT



in estimating the distance between two arbitrary hosts vglimproved. This is especially true
when the number of available beacon nodes is small. To amisér new coordinate system,
GNP formulates an optimization problem that minimizes tleem@pancy between the measured
network distance and the distance computed by a distanctidann a coordinate system, and
applies the Simplex Downhill method to solve the minimiaatproblem. In spite of its many
advantages, as will be elaborated on in Section Ill, GNP dwm¢sguarantee that a host has a
unique coordinate in a coordinate system. Depending onnitielivalue used in the Simplex
Downhill method, a single host may have different coordisat

In this paper, we present a new coordinate system calledrieenet Coordinate System
(ICS). The distances from a host to beacon nodes are expressedsiarael vector, where the
dimension of the distance vector is equal to the number ofdreaodes. As each beacon node
defines an axis in the distance data space, the bases mayrblateat. We apply the principal
component analysis (PCA) to projects the distance dataespdo a new, uncorrelated and
orthogonal Cartesian coordinate system of (much) smailfeeisions. The linear transformation
essentially extracts topology information from delay mgaments between beacon nodes and
retains it in a new coordinate system. By taking the first sdyaincipal components (obtained
in PCA) as the bases, we can construct the Cartesian cowdigatem of smaller dimensions
while retaining as much topology information as possible.

Based on the PCA-derived Cartesian coordinate system, evegitopose a method to estimate
the network distance between arbitrary hosts on the Intefiffee network distances between
beacon nodes are first analyzed to retrieve the principapooents. The first several components
are scaled by a factor (such that the Euclidean distancés indw coordinate system approximate
the measured distances) and used as the new bases in thmat®system. The coordinate of a
host is then determined by multiplying its original distanector to (a subset of) beacon nodes
with the linear transformation matrix consisting of thenaipal components. As compared to
GNP, ICS is more computationally efficient because it onlyurees linear algebra operations.
In addition, the location of a host is uniquely determinedthe coordinate system. Another
advantage of ICS is that it incurs smaller measurement eagkbhas a host does not have to
make delay measuremental the beacon nodes, but only to a subset of beacon nodes. This is
especially desirable in the case that some of the beacorsradenot available (due to transient

network partition and/or node failure). Finally, we shova \nternet experimentation with real-
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life data sets that ICS is robust and accurate, regardlegseafumber of beacon nodes (as long
as it exceeds certain threshold) and the complexity of ndtwapology.

The rest of the paper is organized as follows. In Section B, pvovide the background
material and define a distance coordinate system usingrlalgabra. In Section Ill, we give a
summary of related work in the literature and motivate thedn®r a new coordinate system. In
Sections IV-V, we first introduce PCA and then elaborate 08. |IEollowing that, we present

in Section VI experimental results, and conclude the pape&ection VII.

[I. PRELIMINARY

The topology of the Internet can be modeled in a coordinastegy based on the delay
measured between hosts. First we considaraa distance space. Each host measures the
network distance (i.e., the round trip delay) to the othest®iausingping or traceroute. Under
the assumption that there existhosts, the coordinate of a hdst in anm-dimensional system

can be represented by the distance vector:
di - [di17 ce ey d’im]T ) (1)

whered;; is the network distance measured by ttehost to thej* host andd;; = 0. In general,
d;; # d;; because the forward and reverse paths may have differeraatbastics. The overall
system is represented by anby-m distance matrixD, whosei* column is the coordinate of
hostH;:

D=[dy,...,d,). 2

HereD is a non-symmetric square matrix with zero diagonal entiiéss representation is quite
simple and intuitive, but contains too much redundant mation as every host defines its own
dimension in the coordinate system.

To reduce the redundancy of the above representation, wad¢peesent the network distances
between hosts in geometric coordinate system. In this paper, we will study how to construct
a coordinate system of the least possible dimension, whtkining as much topological infor-
mation as possible. Under the assumption that a hgdtas the coordinate; in a coordinate
system, the network distandg; from the hostH; to a hostH; can be estimated without direct

measurement by computing a distance metric funcfién(i.e., d;; ~ Jij = fU(xi,%;)). The
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generalized distance metric function [8] is defined as

Ly(xi,x5) = <Z |k — 56jk|p> : 3)
k=1
Some of the most important metrics are the Manhattan distancthe Euclidean distance,,

and the Chebyshev distande,. In particular, it has been shown that, can be expressed as

Loo(x;,x5) = I)ILH;) L,(x;,%x;) = max | ik — Tk

Note that for a coordinate based approach, violation torthedle inequality of network distance
measurements may degrade the performance of the distatoatesn. Fortunately it has been
shown in [6] that violation to the triangle inequality vidilans is not particularly frequent through

various measurement data sets.

[Il. RELATED WORK
A. Methods in the distance data space

Several methods have been proposed to estimate the netigtakak between hosts on the
Internet. These methods envision an infrastructure in wisiervers (beacon nodes) measure
network distances between one another, and a chigén(ordinary host) infers its distance to
some other host{, based on the distance information between servers. Hotzedeffor a host
H,, a distance vectod, = [da1, ..., dum]T [4], Whered,; is the measured distance to tié
beacon node foi € {1,...,m} andm is the number of beacon nodes. Then, the network

distanced,, between host%{, andH, was shown to be bound by:
max |dg; — dpi| < dop < min(dg; + dii)- 4)

Note that the lower bound is the Chebyshev distance betweetwo vectorsd, andd,. Hotz
also showed that the average of the upper and lower boundsalgngives a better estimate
of the distance than either bound. Guytenal. later applied Hotz’s triangulation method to
calculate the distances to various servers and to locatbyeaes on the Internet [5].

A global architecture for estimating Internet host dis&s)aalledthe Internet Distance Map
Service, IDMaps, was first proposed by Franasal. [2]. The architecture separates beacon nodes
(calledtracers) that collect and distribute distance information fronmenlis that use the distance

map. Each tracer measures the distances to IP address prgfiRe) that are close to itself.
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A client first determines its own AP and the autonomous sysi@8) the AP is connected
to. The client then runs a spanning-tree algorithm over tistadce information gathered by
tracers to find the shortest distance between its AS and théhaiSthe AP of the destination
belongs to. This distance is taken as the estimated distdetods of this type (i.e., methods
that represent network distances in a data space) neitiagrzandelay measurements nor infer
network topology. Consequently, their performance depérmavily on the number and placement
of beacon nodes. If the number of beacon nodes is small, tiraat®n performance may not
be good.

In order to extract topological information, Ratnasaebyal. [9] proposed a binning scheme.
A bin is defined as the list of beacon nodes in the order of agirg delay. The bin of a
host indicates the relative distances to all the beaconsidétr example, if the bin of a host
is "H,H.H,", beacon nodeH, is the closest to the host, arfd, is the farthest to the host.
The authors applied the binning scheme to the problems ddtaasting overlay networks and
selecting servers. A host joins an overlay network node tacsea server whose bin is most

similar to its own bin.

B. Methods in the geometric coordinate system

Ng et al. proposed a coordinate-based approach, c&lethal Networking Positioning (GNP)
[3]. Instead of using the raw network distances, GNP remtssihe location of each host in a
geometric space, in which the distance between two hostsfisedl as a distance functiof.
The major advantage of representing network distances aoalmate system is its capability to
extract topological information from the measured netwdidtances. As a result, the accuracy
in estimating the distance between two arbitrary hosts éllimproved especially in the case
that the number of beacon nodes is small.

Two optimization problems have been considered in GNP irrotd obtain the coordinates
of beacon nodes and hosts in the coordinate system. The faiskem obtains the coordinates

of beacon nodes in GNP by minimizing the following objectfuaction:
Ji = Zg (dija fd(Xi,Xj)) ) )
i.j

where€ is an error function (e.g., square errat); is the measured distance betweenithend

5" beacon nodes, and is the coordinate of thé" beacon node in the coordinate system. The
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second optimization problem determines the coordinatenadrdinary hostH, by minimizing

the following cost function:

Jo = Zg (dhia fd(Xi,Xh)) ) (6)

where d;; is the measured distance between Hasand thei’® beacon nodes, angl, is the
coordinate of the host{. GNP tackles both optimization problems using the SimplexvBhill
method [10]. Unfortunately, the Simplex Downhill methodlygives a local minimum that is
close to the starting value and does not guarantee that st s unique in the case that the
cost functions are not (strictly) convex. (The cost funeti@xpressed in Egs. (5) and (6) are not
strictly convex.) It is stated in [3] that the first optimizat problem may have an infinite number
of solutions, and any solution is sufficient. If the solutitinthe first optimization problem is
a good approximation of a global minimum, the coordinateb@dcon nodes thus calculated
suffice in the first problem. However, this is not the case m skcond optimization problem.
A host in GNP may have different coordinates depending onstheting values used in the
Simplex Downhill method. The fact that ordinary hosts mayehaon-unique coordinates may
lead to estimation inaccuracy. We demonstrate the probtethe following example.

Example 1. (Problem with GNP) Consider four hosts, two of which are tedain one
autonomous system (AS), and the other two in another AS. Alsume (for demonstration
purpose) that the distance between two hosts in the same ASwisile the distance between

two hosts in different ASs is 3. Then the topology can be esged using the following distance

matrix D: ) )
013 3
103 3
D=
3301
| 3 3 1 0

In the Euclidean space model of GNP, the first cost functipin two-dimensional coordinate

system can be written as

2 2
2 2

Ji= Y L=\ | (e —j)? | + > 3=y | D (@i — w0)?

(4,7)=(1,2),(3,4) k=1 (4,7)=(1,3),(1,4),(2,3),(2,4) k=1

We solve the optimization problem using the 'fminsearchidtion in Matlab, which implements

the Simplex Downhill method, with the starting values, = [0,0]", x5 = [1,1]7, x} =
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Fig. 1. The cost function for the coordinate of an ordinargthia Example 1

[—1,—1]7, andxj = [0,0]”. The coordinates of the beacon nodes calculated with thisfse
starting values arer; = [0.4433,2.0048]7, x, = [1.2262, 1.4248]7, x3 = [-0.5137, —0.9240]7,
andx, = [—1.2966, —0.3440]. Note thatLy(x;,x,) = 0.9743 ~ 1, Ly(x;,x3) = 3.0812 ~ 3
and so on.

Now assume that a hosi measures its distances to four beacon nodes, and obtaistaaad#
vectord; = [1,4,1,4]T. The cost function/, in the second optimization problem (Eq. (6))

becomes

2 2

Bo=> (1= @ —aw)? | + D [4= D (i — )2

i=1,3 k=1 i=2,4 k=1
Figure 1 depicts the cost functios, with respect tox,; and x,,. The cost function has
two local minima at(1.2866, —0.9130) and (—1.3571,1.9938). Therefore,x;, can be either
[1.2866, —0.9130]7 or [—1.3571, 1.9938]" depending on the starting values of the Simplex Down-
hill method. If the starting value is (1,-1), the Simplex Dadwll method renders the former local
minimum (1.2866, —0.9130). This implies that GNP does not guarantee a unique mappamy fr
the raw distance vector to the Cartesian coordinate. O

Our proposed approach, ICS, shares the similarity with GNtRat it also represents locations
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of hosts in a Cartesian coordinate system instead of a raiandis space, and consequently,
can extract topological information from measured netwdigtances. ICS, however, provides a
unique mapping from the distance space to the Cartesiardicabde system (and thus yields a

more accurate representation). In addition, it has theweillg advantages:

« With the use of principal component analysis (PCA), a host calculate its coordinates
by means of basic linear algebra (e.g., the singular valgerdposition and matrix multi-
plication). The computational overhead is reduced.

« Unlike all the other previous work, a host does not have tosumeaits distance taill
the beacon nodes, but instead to a subset of beacon nodesaédsirement overhead is

reduced.

It has come to our attention that Tang and Crovella [6] alsplie@ principal component
analysis to project distance measurements into a Cartesiardinate system with smaller
dimensions. The authors considered the coordinate of aihdste coordinate system as the
distances tovirtual landmarks while the coordinate in the distance data space represkats t
distances to actual beacon nodes (landmarks). For the $akalability, the authors also devised
a coordinate exchanging method among multiple coordingtems.

Another technique that embeds the Internet graph into aowespace islighthouse [7].
Similarly, lighthouse uses a linear transformation to categhe coordinates of hosts. However,
unlike ICS and virtual landmarks, lighthouse applies thar@®Schmidt process to compute
an orthogonal basis based on the intra-lighthouses dessarithis is achieved through the QR
decomposition as opposed to singular value decomposiBdD( used in principal component
analysis). The key advantage of lighthouse is that a hostflaaibility in choosing its set of

landmarks (termed as lighthouses) in a distributed manner.

IV. PRINCIPAL COMPONENTANALYSIS (PCA)

We now discuss how to extract topological information frdme tlistance matriD (Eq. (2)).
In Example 1, the dimension of the distance maldixs four. As hosts in the same AS are very
close to each other, the distance can be represented in ditwemsional space by projecting
their coordinates into two-dimensional space. The dinmadity depends not on the dimension

m of the distance matridD but on the network topology, and can be much smaller than
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Fig. 2. Example of the principal component analysis

We apply principal component analysis (PCA) [11], [13], JXd reduce the dimension of
the distance matrix while retaining as much topologicabinfation as possible. In a nutshell,
PCA transforms a data set that consists of a large numberossijly) correlated variables to
a new set of uncorrelated variablgsjncipal components, which can characterize the network
topology. The principal components are ordered so that tise deveral components have the
most important features of the original variables. In maittr, thek!” principal component can
be interpreted as the direction of maximizing the variatdrprojections of measured distance
data while orthogonal to the firgtc — 1) principal components [13]. We use the following
example to illustrate the concept.

Example 2: Figure 2 gives an example of performing PCA for two correlatariables,x
and y. With the use of PCA, we obtain two principal componenis, and pc,. As shown in
Fig. 2, the first principal componenpic, represents the direction of the maximum variance. The
one-dimensional linear representation is calculated lyepting the original data ontpc,. O

Now the question is how to determine these principal comptdhe most common approach

is to use singular value decomposition (SVD). Specificalig, SVD of D in Eq. (2) is obtained
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D = U W.VT, (7)
01

09

Om
whereU andV are column and row orthogonal matrices, an are the singular values of
D in the decreasing order (i.er; > o; if i < j). Note thatD”D = (UWV")T(UWVT) =
V(WTW)VT. This means that the eigenvectorsIdof D make upV with the associated (real
nonnegative) eigenvalues of the diagonalWi¥'W [12]. Similarly, DD = UT(WWT)U.
The columns of then x m matrix U = [ uy,...,u,, | are the principal components and the
orthogonal basis of the new subspace. By using theirsblumns ofU denoted byU,,, we

project them-dimensional space into a newrdimensional space:
cZ:Ugd,:[ul, ,un]TdZ (8)

We re-visit Example 1 to illustrate the procedure.
Example 3. (Example revisited) Consider the four hosts and the coomdipng distance matrix

in Example 1. We obtain the principal components via singuddue decomposition (Eq. (7)):

-5 =3 5 0 7000
U— -5 —3 — 0 7W:0500
-5 3 0 -5 0010
-5 3 0 5 ] |00 0 1|

The original distance vector of the first hostds = [0, 1, 3, 3]7. With the use of Eq. (8), we

can calculate the coordinate of the first host in a two-dinwera coordinate system as

0
_1 o1 1 _1 1 _T
c = Ugdl — 2 2 2 2 — 2
_1 o1 11 3 5
2 2 2 2 2
— 3 =
Similarly cy(= ¢1) = [-1,3]" andcs = ¢4 = [-1,—2 |7. Note that PCA assigns the same

coordinate to the two hosts in the same AS because of the lowrdiionality. Whem = 4, U, =
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TABLE |

AVERAGE PROXIMITY IN ORIGINAL GEOMETRY SPACED

Metric | NPD (m = 33)| NLANR (m = 113)
Ly 5.818 6.964
Lo 6.545 6.495
Lo 12.151 5.504
75 2 7 5 2 7 5 2 7 5 2
U, er=[-4,5, =50l ca =[5, 5,7, 0], & = [-],-5,0,¢], andes = [, —5,0, —F].

In this case =m), the mappingc; = U7 - d; is isometric (e.g.,Lo(d;,d3) = Ly(c;,c3) =
5.0990), and thus the two spaces spanneddhg andc;’s are the same from the perspective of

geometry (i.e.Lo(d;,d;) = La(c;, c;)).

A. Dimensionality

Another important issue that should be addressed in repragenetwork distances in a-
dimensional coordinate system is how to determine the adeqiegreen, of dimensions in the
coordinate system. This problem has not been extensivetiest, and is usually application-
dependent [15]. One of the commonly adopted criteria is thewative percentage of variation
that selected principal components contribute to [11]. peeentaget,, of variation accounted
for by the firstk principal components is defined by
Z?ﬂ gj
E;’n:1 oj

One may pre-determine a cut-off valué,of cumulative percentage of variation, and calculate

. = 100 x 9)

n to be the smallest integer such that> ¢*. In the previous example; = 50 %,t, = 85.7 %,
t3 = 92.9 %, and, = 100 %. Ift* is set to 80 %, then the degree of dimensions should be set

ton = 2.

B. Experimental Results

To investigate whether or not PCA can be used to transformarktdistances on the Internet
to coordinates in a coordinate system of smaller dimensamaisstill retain as much topological

information as possible, we apply PCA to two real-life datéss
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Fig. 3. Average proximity for the NPD data set ((a)) and theANIR data set ((b)) under different distance metrics.
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Fig. 4. Eigenvalues and cumulative percentage of varidtiorthe NPD data set and the NLANR data set.

« NPD-Routes-2 data set [16]: contains Internet route measemts obtained biraceroute.
The measurements were made between 33 Internet hosts inetiofk Probe Daemon
(NPD) framework from November 3, 1995, to December 21, 199&.obtain the distance
matrix D in Eqg. (2) by taking (for each pair of hosts) the minimum vabfemeasured
round trip times (RTTS) in order to filter out the queuing gela

« NLANR: contains the RTT, packet loss, topology, and on-dedridiroughput measurements
made under the Active Measurement Project (AMP) at Natidwaddoratory for Applied
Network Research (NLANR). More than 100 AMP monitors areduse make the mea-

surements [17]. The round trip times between all the mositoe measured every minute,
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and are processed once a day. We use one of the NLANR RTT datemeasured between
113 AMP monitors on April 9, 2003.

We first compare different distance metrics with respect heirt quality of representing
topological information. Given that the number of hostshe tlata set isn, each host has an
m dimensional distance vector as its coordinate in the ratanite space, and andimensional
distance vector in the coordinate system obtained by PCA ¢ < m). We calculate for each
host the distances, L,, and L., (Eq. (3)) to all the other hosts, and determine its closest ho
based on the distance calculated in the coordinate systertheX’closest” host calculated under
the various distance metrics may not be the actual closastWwe define the notion qdroximity
to measure the quality of representing topological infdroma If the host calculated to be the
closest is thé:*" closest, the proximity is set th, £ > 1. We average, for each distance metric
used, the proximity over all the hosts.

Table | gives the average proximity in the raw distance spat®se dimension isn = 33
and 113 for the NPD and NLANR data sets, respectively. In tiDNlata set/l; gives the
best performance — the host calculated to be the closeseis.$h8 closest host averagely.
In the NLANR data set/., gives the best performance. These results show that theaaycu
of representing topological information in a raw distanpace depends heavily on the distance
metric.

Next we study the (in)effectiveness of using PCA to representwork distances. Figure 3
gives the average proximity with respect to the number afgypial components for the NPD and
NLANR data sets. As shown in Fig. 3 (a), when the number ofgypie components is greater
than 3, the proximity is almost the same as that in the ravadcs data space. This means that
the topological information can be effectively represdnite a 3-dimensional space instead of
in a 33-dimensional space. Another important observasothat the average proximity in the
new coordinate system of smaller dimensions remains the sagardless of the distance metric
used. The reason why the proximity is independent of thedc& metric used is due to the fact
that PCA finds a set of uncorrelated bases to represent timdotppal information. A similar
trend can be observed in Fig. 3 (b) in which the proximity im@ét the same as that in the
distance space when the number of principal componentsgsrighan 10.

Figure 4 plots the eigenvalues and their corresponding tatime percentage of variation. The
largest eigenvalues are 4760.0 and 7787.3, respectivelyhé NPD and NLANR data sets. If
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Fig. 5. An example architecture for the proposed Internatr@ioate System (five beacon nodes and three ordinary hosts)

we set a cut-off threshold af = 80 %, the smallest value of that achieves the threshold for
each data set is, respectively, 9 and 7. In this cases 354.7, and the average proximity is
6.54 for the NPD data set, ang = 325.2 and the average proximity is 7.49 for the NLANR
data set.

In summary, we show in this section that the network distamtehe Internet can be repre-
sented, with the use of PCA, in a Cartesian space that usesadl€s) set of uncorrelated bases.
Moreover, we show that the new coordinate system is lesseptibte to the distance metrics

used in representing topological information.

V. INTERNET COORDINATE SYSTEM
A. Overview

We first present a basic architecture for the Internet Coatdi System (ICS). As mentioned in
Section I, the objectives of ICS are i) to infer the networgdimgy based on delay measurement
and ii) to estimate the distance between hosts without dimeeasurement. Succinctly, the
architecture for ICS consists of a number of beacon noddsctilect and analyze the distance

information. Figure 5 gives an example architecture of |Gt Wwe beacon nodes. Beacon nodes
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periodically measure round trip times (RTTs) to other beasodes and construct a coordinate
system. The coordinates of beacon nodes are then calculsidtddthe use of PCA, based on
the measured RTT data among the five beacon nodes. We witiralabon how to calculate the
coordinates of beacon nodes in Section V-B.

An ordinary host determines its own location in ICS by meguits delays to the entire or
partial set of beacon nodes and obtains a distance vectexeksplified in Fig. 5, host 1 measures
its distance to five beacon nodes, and obtains a five-dimealsiistance vector. The location of
the host in ICS is then calculated by multiplying the disewaector with a transformation matrix.
(We will elaborate on how the transformation matrix is dedwand distributed in Section V-C.)
After calculating its own coordinate, host 1 may report i®iinate to a DNS-like server that
keeps coordinates of ordinary hosts. To estimate the nktdistance to some other host, host
1 may query this DNS-like server which then determines thinesed distance as long as the
coordinate of the other host is kept at the server. In the saarmner, host 1 can also infer which

other host is closer to itself.

B. Calculating the Coordinates of Beacon Nodes

We now elaborate on how we construct ICS based on the measetedrk distances between
m beacon nodes, and apply PCA (Section 1V) to "transform” e distance space to a new
coordinate system of (much) smaller dimensions.

Each beacon node measures its distances to the other bezs) and obtainsra-dimensional
distance vectod; in Eq. (1), of which thej* elementd,; is the measured distance to t}é
beacon node. An administrative node, which can be electexhg@rneacon nodes, aggregates the
distance vectors of all the beacon nodes, and obtains th&ndes matrixD in Eq. (2). Then,
the distance matrix is decomposed into three matldedV, andV in Eq. (7). Using the first
n principal components, the coordinate of a beacon node @lleaed asc; = U, d; in Eq. (8).
As shown in Section IV-B, this coordinate preserves topicllgnformation.

Note that the distance between two beacon nodes calculgtEd.i8) does not coincide with
its actual measured distance. For instanggc,, c3) = 5 # di3 = 3 whenn = 2 in Example 3.
To use the coordinates for distance estimation, we applynalsilinear operatiorg; = ac; + 3,

SO0 as to minimize the discrepancy between the distancesamtexl in the coordinate system

and the measured distance. As a scaling operation does fieat #ie distance between two
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coordinates, we only consider the scaling operation witltalirsg factorq, i.e., 5 = 0. The
optimal scaling factor*(n) that minimizes the discrepancy between the Euclideanrdistin
the new coordinate system of dimensierand the measured delay, i.é4(c;, ¢;) ~ d;; for all

iandj € {1,...,m}, can be determined by minimizing the following objectivedtion J(«):
J(a) = Z Z (LQ(O{CZ', OéCj) — dij)2 . (10)
i

After a few algebraic operations, the positive solutiah, can be shown to be
22y dijLa(ei, cg)

T (i)

The transformation matriXJ,, from a distance vector in the distance space to the cooslinat
ICS is then defined as

a’(n) (11)

_ TNl
U, = a*<n)Un = ZZ mzj m ]2 d Un7 (12)
Ez’ Zj lij
wherel;; = L,(Uld;, UZd;) and the transformation matri&,, = [u,, ..., u,] is obtained from

the distance matriD between beacon nodes and its SVD. The coordinates of beac®s are
then calculated ag; = UZd; for all i € {1,...,m}.
In summary, the procedure taken to calculate the coordinait®eacon nodes is as follows:
(S1) Every beacon node measures the round trip times to liee loéacon nodes periodically.
(S2) An administrative node aggregates the delay infoomatnd obtains the distance matrix
D in Eq. (2).
(S3) The administrative node applies PCA in Eq. (7) to obtaetransformation matrixJ.
(S4) The administrative node determines the dimensionefctordinate system using the
cumulative percentage of variation defined in Eq. (9) (witbre-determined threshold
value).
(S5) The administrative node calculates the transformatmatrix U,, in Eqg. (12) from
Eq. (7) and Eq. (11).
Note that the administrative node may be replicated (perirap hierarchical manner) to enhance
fault tolerance and availability. This subject is outsie scope of this paper, but is warrant of
further investigation. We illustrate the above procedwedyisiting Example 1.
Example 4: Assume that the four hosts in Example 1 are beacon nodes. Whef, c; =
cy = [-3.5,2.5] andcz = ¢, = [-3.5, —2.5]T. By Eq. (11), the scaling factar is 0.6, and the
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transformation matrixU, is

T
_ -0.3 =03 =03 -0.3
U, =
-03 -03 03 03
Therefore,c; = ¢, = [-2.1,1.5] and¢; = ¢4 = [-2.1, —1.5]. The distances between two hosts
in different ASs is exactly 3. When=4, o = 0.5927,L,(¢;,¢2) = Lo(C3,¢4) = 0.8383, and
Lg(él, 63) = Lg(él, 64) = LQ(EQ, 63) = Lg(ég, 64) = 3.0224. O

C. Determining The Coordinate of A Host

The procedure that a host takes to determine its coordina€$ is as follows: A host,

(H1) obtains the list of beacon nodes and the transformatiatrix U,, (Eq. (12)) from the

administrative node.
(H2) measures the network distancks= [l.1, . . ., lam]T, to all the beacon nodes usiping
or traceroute, wherel,; denotes the delay measured between fgsand thei’” beacon
node. (We will discuss how to reduce the number of measuremerSection V-D.)

(H3) calculates the coordinate,,, by multiplying the measured distance vector with the
transformation matrix, i.ex, = U7 -1,.

Example 5. Consider the ICS system in Example 4. Assume that k@sis closer to the AS
where the first two beacon nodes reside, and obtains a déstaator ofl, = [1,1,4,4]7. In
(H3), x, = [-3,1.8]T. In the case of. = 2, the estimated distances between Hgstand beacon
nodes ard.,(¢;,x,) = La(C2,%,) = 0.94 and Ly(€3,x,) = La(C4, X,) = 3.42. Assume that host
H, is far from all four beacon nodes, and obtains a distanceovedtl, = [10, 10, 10, 10]. In
this casex;, = [—12,0]7, and Ly(c;, x;) = 10.01 for i = 1,..., 4. O

D. Reducing The Number of Measurements

To discover accurately the topology of the Internet, a siefitcnumber of beacon nodes should
be judiciously placed on the Internet. (Note that PCA is ableextract essential topological
information from a set of (perhaps correlated) delay meaments. However, it does not preclude
the important task of placing beacon nodes properly on ttegriet so as to represent the network
topology accurately. We will comment on this issue in SetbE.) On the other hand, for the

sake of scalability, it is not desirable that a client has ®asure its round trip times tl the
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beacon nodes. To reduce the measurement overhead incyrr@ddst, it would be desirable
that a host measures the distance from itselbrity a subset of beacon nodes. This also allows
ICS to operate even in the case that some of the beacon noelesinavailable (due to, for
example, transient network partition and/or node failure)

In (H3), the transformation matriXUZ and the original distance vectd; are needed to
calculate the coordinate of a host. The transformationimetifixed in ICS once it is calculated
by the administrative node. If hot, makes delay measurements only to a subgenf beacon
nodes, the missing elementslip i.e., l,;, ¢« € N/, have to be inferred.

The procedure for partial measurement is as follows: H@strandomly chooseg beacon
nodes k < m) and measures its distances to this subseipf beacon nodes. (In our experiments,
we will investigate the effect of the value d&f on the estimation performance.) Instead of
calculating the coordinate by itself, host, transmits the distance vectbrwith m — k& missing
elements to the administrative node. For each missing elefpen 1,, the administrative node
(i) selects in\ a beacon node (say thé€" beacon node) that is closest to tite beacon node,
(i) replaces the missing elemefy; with a function ofl,; (to be discussed below), and (iii)
calculates the coordinate on the behalf of hHast

The performance of the partial measurement method depa&adsynon how well the missing
elements inl, are represented (step (ii)). In order to improve the peréoroe, instead of
directly using the network distance measured to the cldssston node, we can leverage Hotz's
triangulation method (Section Ill) as follows: As a beaca@&?, that is not in\/ has already
measured its distances to other beacon nodes, the distahween host{, and nodeH, can

be estimated using Hotz’s triangulation method.

E. Enhancing ICS by Clustering

If beacon nodes are well distributed and selected with gpecertain clustering criterion, the
performance is expected to be better [3] because the basis obordinate system is constructed
based on the measurements between beacon nodes. Thergesutgaélg two aspects in which the
notion of clustering can be applied in selecting beacon s0@& the one hand, if the distances
among hosts that are available to serve as beacon nodes cagaseared, a clustering algorithm
can be applied to group hosts that are close to one anotloetlirgters [18]. Each host is initially

assigned to its own cluster, and pairs of neighboring citesiee repeatedly merged into a single
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cluster untilk clusters remain. The median node in each cluster is selested beacon node.
This approach serves as a guideline for placement of beaodesn

On the other hand, if the beacon nodes have been plaqedbri, the clustering technique
can be incorporated into the partial measurement methotti¢8eV-D) as follows: Instead of
randomly selecting of beacon nodes in Section V-D, the athtnative node specifies, for a host
‘H,, a list of beacon nodes to which hdst should make delay measurements. The administrative
node applies the clustering technique to form clusters gnb@acon nodes, and selects for each
cluster a median beacon node. The administrative node thedsshost{, a list of median

beacon nodes. The rest of the operations follow the proeedwen in Section V-D.

VI. EMPIRICAL STUDY

To validate the effectiveness of ICS in inferring the Intdrtopology, we conduct experiments
using both an empirical data set (NLANR) [16] and a synthett¢a set (GT-ITM) [19]. As
discussed in Section IV-B, the NLANR data set contains regyddata measured kpyng. The
GT-ITM data set, on the other hand, is obtained using the ®T-opology generator [19] and
the ns-2 simulator [20]. The quality of a coordinate system can fiected by several factors
such as the number and distribution of beacon nodes and thelexity of the network topology.
With the use of the GT-ITM topology generator, we are ablettmlyg ICS under a wide variety
of network topologies, and investigate the effect of netwtmpology on the performance of
ICS. For each data set, we randomly selecbeacon nodes3(< m < 30).

We compare ICS against with IDMaps, Hotz’s triangulationd &GNP with respect to the
average of estimation erros; defined as

dz’j ’

fori,j € {1,...,H} and: # j. Here H is the number of hosts in the data sefs, is the

Eij =

measured distance, ardi, j) is the estimated distance between ttteand j'* hosts. IDMaps,
Hotz’s triangulation, GNP, and ICS are implemented as Vadto
. IDMaps: Suppose hostd, and H, are close to theé' and the;"* beacon nodes (called
tracers in IDMaps), respectively, and their corresponding diséanare denoted a&,; and
dy;. Then the estimated distancedg + d,; + d;;, whered,; is the distance between thié

and j** beacon nodes.
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Fig. 6. Comparison of IDMaps, Hotz's triangulation, GNPdaliCS for the NLANR data setn{ dimension of coordinate

system).

« Hotz's triangulation: With Eq. (4), we calculate three Hetdistances, i.e., the lower bound
(denoted a#h), the upper bound (denoted @s), and the average of the two bounds (denoted
asavg).

« GNP: We solve the two optimization problems minimizifgin Eq. (5) andJ; in Eqg. (6) us-
ing the 'fminsearch’ function in Matlab (which implementsetSimplex Downhill method).
We vary the dimension of the coordinate system frans 2 to 10, and report the most
representative results.

« ICS: We evaluate both the full and partial measurement naisthio a coordinate system
with dimension varying fronn = 2 to 10. In the partial measurement method, we compare
the performance between the cases where beacon nodes dmnharselected and are
determined by clustering. The number of beacon nodes whinbsameasures its distance
to is set tok = n + 1, 2n, and3n, wheren is the dimension of the coordinate system. In
the partial measurement method, the missing elements idistt@nce vectot, of hostH,

are estimated by Hotz’s triangulation (as was discussecati@ V).

A. Results for the NLANR data

Comparison in terms of estimation errors. Figure 6 (a) gives the estimation errors of
IDMaps and Hotz’s triangulation. The error obtained by ID#as quite large, but gradually

decreases from 1.32 at = 3 to 0.40 atn = 30. As the estimate is calculated by the sum of the
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three distances,; + d,; + d;;, if the two beacon nodes are on the shortest path, the estineik
approximates the network distance. This accounts for tbetFat the estimate becomes more
accurate asn increases. The upper bound of Hotz’s triangulation extibie same trend as
IDMaps. Asm increases, the probability that the beacon nodes are orhtireest path between
two hosts also increases. The lower bound is quite accuraenw: is small. However, the
estimation error increases asincreases. Consistent with the findings in [5], the averdgbe
two bounds renders a more accurate estimate of the netwstdnde, and is less susceptible to
the number of beacon nodes.

Figure 6 (b) gives the estimation errors of GNP, ICS with th# measurement method,
and Hotz’s triangulation with the average of the two bour@slP performs better than Hotz’s
triangulation when the number of beacon nodes is smal(15). However, its estimation error
increases as increases, and becomes almost the same as that of Hotogulaion. This is
probably due to the fact that a local minimum (rather thanadal minimum) is selected in the
optimization problems. Consider, for example, the casettiee exist twenty beacon nodes and
the dimension of the coordinate system is five. The cost fonct; is minimized in a hundred-
dimensional vector space, i.e., the number of variablesarcbordinates of beacon noded (§.

In general, an optimization problem of high dimensions lgasinverges to a local minimum,
which in turn leads to inaccuracy in the coordinates of hoassexplained in Section IlI-B.
ICS gives the best performance. Considering that the RTTsurement between two hosts
usually exhibits a large variation (the average of the saeshdleviation of RTT measurements
is approximately 32 % of the RTT measurement), the delayneséid by ICS is quite accurate.
In most cases, it incurs lower estimation errors than IDMdtpgives the same performance as
GNP whenm < 15 and better performance whem > 15. Here, we select the dimension of the
coordinate system to be five as the improvement is marginahwh> 5 as shown in the next
figures.

Effect of the coordinate system dimension on the performance: Figure 7 depicts the effect
of the dimension of the coordinate system on the performand€S ((a)) and GNP ((b)). The
estimation error of ICS is the largest when the dimensiorhefdoordinate system is twa &

2), and improves as the network topology is representedghdnidimensional space. However,
the improvement levels off when > 6. Note that the cumulative percentagefor n = 6 is

78.14 % in Fig. 4. The estimation error of GNP is the smallds¢n. = 4, and is even slightly
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Fig. 7. The effect of the dimension of the coordinate systenthe performance of ICS and GNP for the NLANR data set

(n: dimension of coordinate system).

better than that of ICS in the range K m < 16. Note also that the estimation error of GNP
whenn = 6 is much larger than that whem = 4. This is again due to the reason that the
number of variables increasesasncreases. This shows that the accuracy of GNP depends on
the selection of the dimension of the coordinate system.

Figure 8 gives the results of ICS with the use of partial messent method. Among: beacon
nodes k beacon nodes are either randomly selected ((a) and (b)gterrdined by the clustering
technique [18] ((c) and (d)). The number of measurementsenbgda host is now proportional
to the coordinate dimensiom, i.e., kK = min(n + 1,m) in (a) and (c), andc = min(2n,m) in
(b) and (d). As shown in Fig. 8 (a), when= 6, a client measures its distances to six beacon
nodes regardless of the valueraf and the average of the estimation errors is increased 2y 20.
% (from 0.3287 in Fig. 7 (a) to 0.3951). When the number of maeasents is doubled in Fig.

8 (b), the average of the estimation errors is increased lmnk.0 % (as compared to Fig. 7 (a))
in the case of» = 6. An encouraging result is that the estimation error doessigtificantly
increase even when the number of measurements is small{ie: k). This is perhaps due to
the fact that measurements made in a coordinate systemiwathse of more beacon nodes are
more accurate. As shown in Fig. 8 (c) and (d), when the mediale f each cluster is chosen
as a beacon node, the estimation errors are comparativelifesrthan those in Fig. 8 (a) and
(b), respectively. This implies that the partial measuneirmeethod benefits from choosing most

representative beacon nodes (i.e., the median node of &astiery.
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Comparison between ICS and GNP in terms of computational costs. To study the com-
putational costs incurred by ICS and GNP, we have implendetiteir functions of computing
coordinates with the 'svd’ and 'fminsearch’ functions in 4, and made the measurement
by using the 'cputime’ function on an IBM Thinkpad T30 (withsangle 1.8 GHz Pentium IV
processor and 512 MBytes main memory) that runs Microsoftddivs XP. Figure 9 shows the
average CPU time consumed in computing the coordinates aifdmenodes ((a)) and ordinary
hosts ((b)) under ICS and GNP. As shown in Fig. 9 (a), as thebeumof beacon nodes increases,
the computation time of GNP for calculating the coordinadéeacon nodes exponentially
increases. When the dimension is 6 and the number of beacdesns 30, the computation
time of GNP is 884.06 seconds (about 15 minutes). With IC8,laximal computation time
is approximately 17.1 milliseconds. Similarly, as shownFig. 9 (b), the computational time
incurred in calculating the coordinate of an ordinary hast be up to 1.2 seconds under GNP,
while remaining less than 30 microseconds for all casesru@f This suggests that ICS incurs
at least an order of magnitude smaller computation overheadlculating the coordinates than
GNP.

B. Results for the GT-ITM data

We now investigate the effect of topology complexity on tls@rmeation. As mentioned in [19],
the GT-ITM topology generator can be used to create threestgb graphs: flat random graphs,
hierarchical graphs, and transit-stub graphs. We genénatdevel and three-level hierarchical
graphs, each with 400 nodes. Note that each graph has the rsamiger of nodes; however,
three-level hierarchical graphs represent more compléxar& topologies.

Effect of topology complexity on the performance: Figure 10 (a) and (b) depict the perfor-
mance of IDMaps, Hotz’s triangulation, GNP, and ICS underttho-level hierarchical topology.
As shown in Fig. 10 (a), methods that represent the netwgr&logy in a distance space give
large estimation errors when the number of beacon nedés small, and their performance
gradually improves as: increases. Among IDMaps and the three versions of HotZadgulation,
the lower bound of Hotz’s triangulation gives the best perfance. As shown in Figure 10 (b),
between the two coordinate-system-based approaches, &iders large estimation errors, and
the errors increase as increases. The estimation error of ICS, on the other han@,38 at

m = 5, decreases as increases, and becomeéd7 at m = 30.
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Two-level hierarchical topology
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Fig. 10. Comparison of IDMaps, Hotz’s triangulation, GNRdACS for the GT-ITM data setn{ dimension of coordinate

system).

As shown in Fig. 10 (c) and (d), all the approaches, except & larger estimation errors
under three-level hierarchical topologies. In particullae performance of GNP deteriorates quite
significantly. ICS gives almost the same performance as anléwel hierarchical topologies. This
result shows that PCA (upon which ICS is built) can effedgivextract topological information
than the minimization optimization of cost functiods and .J; in Eq. (5) and Eq. (6) used in
GNP.

Effect of the dimension of coordinate systems on the performance: Figure 11 depicts the
effect of the coordinate system dimension on the performaidCS with the full and partial

measurement methods. The number of measurements made partied measurement method
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Two-level hierarchical topology
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Fig. 11. Effect of the dimension of the coordinate systemtmnperformance of ICS for the GT-ITM data set dimension

of coordinate system).

is set tok = min(2n,m), and beacon nodes to which the distance measurement is made a
randomly selected among. beacon nodes. Under all the cases, as the dimensioaf the
coordinate system increases, the estimation errors derrées shown in Fig. 11 (a), there
is virtually no performance improvement when> 3, which implies that a three-dimensional
coordinate space is sufficient to represent the two-lewsbinchical topology. However, when the
partial measurement method is applied, the estimatiom arcoeases from 0.209 to 0.407 in the
case ofn = 3. This means that even though a three-dimensional spacdfigent to represent
the network topology, the number of measurements requiiedld be larger than six in order

to determine the coordinates of hosts accurately. As shavig. 11 (c), the estimate made by
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ICS is quite accurate under the three-level hierarchicabltgy, and the errors decreaseras
increases. As shown in Fig. 11 (d), the estimation errorsimedarger when partial measurement
is made, but if the number of measurement is larger than 12, the estimation error can be
controlled to fall below 0.32.

In summary, IDMaps and the upper bound of Hotz’s triangatatre inaccurate in the case
that the numbernn, of beacon nodes is small. Their performance improves:dacreases. In
contrast, the lower bound of Hotz’s triangulation is acteiia the case that: is small for the
NLANR and GT-ITM data sets, and the errors become larger Her NLANR data set asn
increases. As compared with the two bounds of Hotz’s tritatgun, the average of the two
bounds is less sensitive to the number of beacon nodes. GiNBstinate distances accurately
only when the number of variables in the corresponding agtitron problems is small, i.e., the
number of beacon nodes and the dimension of the coordinatersg are small. ICS provides
accurate estimates under most cases, regardless of theenwmbeacon nodes (as long as it
exceeds a certain threshold), the dimension of the codelsestems, and the level of topology
complexity. ICS with the partial measurement method redube number of measurements
required, while not significantly degrading the performanchis is especially true when the
number of beacon nodes and the dimension of the coordinatersyg are large. Moreover, more
accurate estimation can be made with the partial measutemethod if beacon nodes are chosen

with respect to certain clustering criterion.

VIlI. CONCLUSION

In this paper, we present a new coordinate system, callelhtéraet Coordinate System (ICS),
for measuring the network distance over the Internet. Wevghat the principal component anal-
ysis (PCA) technique can effectively extract topologic#gbrmation from delay measurements
between beacon hosts. Based on PCA, we devise a transformmaéthod that projects the raw
distance space into a new coordinate system of (much) sntiiffteensions. The transformation
retains as much topological information as possible andeyetbles end hosts to determine
their locations in the coordinate system based on a smalbeurof measurements. We show
via experiments using both real measured and synthetic stdtathat ICS can make accurate
and robust estimates of network distances between end &andts much less computationally

expensive, regardless of the number of beacon nodes, thendiam of coordinate systems, and
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the level of topology complexity. Finally, we show the numbémeasurements made by a host

can be further reduced without significant loss of accuracy.
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